
Coursework 7 (Scala, Knight’s Tour)
This coursework is about searching and backtracking, andworth 10%. The first
part is due on 23November at 11pm; the second, more advanced part, is due on
30 November at 11pm. You are asked to implement Scala programs that solve
various versions of the Knight’s Tour Problem on a chessboard. Make sure the
files you submit can be processed by just calling scala <<filename.scala>>.

Disclaimer
It should be understood that the work you submit represents your own effort.
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Background
The Knight’s Tour Problem is about finding a tour such that the knight visits
every field on an n × n chessboard once. For example on a 5 × 5 chessboard, a
knight’s tour is:

4 zzzzz
3 zzzzz
2 zzzzz
1 zzzzz
0 zzzzz

0 1 2 3 4

24 11 6 17 0
19 16 23 12 7
10 5 18 1 22
15 20 3 8 13
4 9 14 21 2

The tour starts in the right-upper corner, then moves to field (3, 2), then (4, 0)
and so on. There are no knight’s tours on 2 × 2, 3 × 3 and 4 × 4 chessboards,
but for every bigger board there is.

A knight’s tour is called closed, if the last step in the tour is within a knight’s
move to the beginning of the tour. So the above knight’s tour is not closed (it
is open) because the last step on field (0, 4) is not within the reach of the first
step on (4, 4). It turns out there is no closed knight’s tour on a 5 × 5 board. But
there are on a 6 × 6 board, for example

zzzzzz
zzzzzz
zzzzzz
zzzzzz
zzzzzz
zzzzzz

10 5 18 25 16 7
31 26 9 6 19 24
4 11 30 17 8 15
29 32 27 0 23 20
12 3 34 21 14 1
33 28 13 2 35 22

1



where the 35th move can join up again with the 0th move.
If you cannot remember how a knight moved in chess, or never played

chess, below are all potential moves indicated for two knights, one on field
(2, 2) (blue) and another on (7, 7) (red):

7 zzzzzzz2N
6 zzzzzzzz
5 zzzzzzzz
4 zzzzzzzz
3 zzzzzzzz
2 zz2Nzzzzz
1 zzzzzzzz
0 zzzzzzzz

0 1 2 3 4 5 6 7

Part 1 (6 Marks)
We will implement the knight’s tour problem such that we can change quickly
the dimension of the chessboard. The fun with this problem is that even for
small chessbord dimensions it has already an incredably large search space—
finding a tour is like finding a needle in a haystack. In the first part we want to
see far we get with exhaustively exploring the complete search space for small
dimensions.

Let us first fix the basic datastructures for the implementation. A position
(or field) on the chessboard is a pair of integers. A path is a list of positions. The
first (or 0th move) in a path should be the last element in this list; and the last
move is the first element. For example the path for the 5 × 5 chessboard above
is represented by

List((0, 4)︸ ︷︷ ︸
24

, (2, 3)︸ ︷︷ ︸
23

, ..., (3, 2), (4, 4)︸ ︷︷ ︸
0

)

Suppose the dimension of a chessboard is n, then a path is a tour if the length
of the path is n × n, each element occurs only once in the path, and each move
follows the rules of how a knight moves (see above for the rules).

Tasks (file knight1.scala)

(1a) Implement a is-legal-move function that takes a dimension, a path and a
position as argument and tests whether the position is inside the board
and not yet element in the path.

(1b) Implement a legal-moves function that calculates for a position all le-
gal follow-on moves. If the follow-on moves are placed on a circle, you

2



should produce them starting from“12-oclock” following in clockwise or-
der. For example on an 8× 8 board for a knight on position (2, 2) and oth-
erwise empty board, the legal-moves function should produce the follow-
on positions

List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))

If the board is not empty, then maybe some of the moves need to be fil-
tered out from this list. For a knight on field (7, 7) and an empty board,
the legal moves are

List((6,5), (5,6))

(1c) Implement two recursive functions (count-tours and enum-tours). They
each take a dimension and a path as arguments. They exhaustively search
for open tours starting from the given path. The first function counts all
possible open tours (there can be none for certain board sizes) and the
second collects all open tours in a list of paths.

Test data: For the marking, these functions will be called with board sizes up
to 5 × 5. If you only search for open tours starting from field (0, 0), there are
304 of them. If you try out every field of a 5 × 5-board as a starting field and
add up all open tours, you obtain 1728. A 6 × 6 board is already too large to
search exhaustively: the number of open tours on 6 × 6, 7 × 7 and 8 × 8 are

6 × 6 6637920
7 × 7 165575218320
8 × 8 19591828170979904

Tasks (file knight2.scala)

(2a) Implement a first-function. This function takes a list of positions and a
function f as arguments. The function f takes a position as argument
and produces an optional path. The idea behind the first-function is as
follows:

f irst(Nil, f ) def
= None

f irst(x :: xs, f ) def
=

{
f (x) if f (x) ̸= None
f irst(xs, f ) otherwise

(2b) Implement a first-tour function. Using the first-function from (2a), search
recursively for an open tour. Only use the field (0, 0) as a starting field of
the tour. As there might not be such a tour at all, the first-tour function
needs to return an Option[Path]. For the marking, this function will be
called with board sizes up to 8 × 8.

3



Part 2 (4 Marks)
For open tours beyond 8 × 8 boards and also for searching for closed tours, an
heuristic (called Warnsdorf’s rule) needs to be implemented. This rule states
that a knight is moved so that it always proceeds to the square from which the
knight will have the fewest onward moves. For example for a knight on field
(1, 3), the field (0, 1) has the fewest possible onward moves.

7 zzzzzzzz
6 zzzzzzzz
5 zzzzzzzz
4 zzzzzzzz
3 z2Nzzzzzz
2 zzzzzzzz
1 zzzzzzzz
0 zzzzzzzz

0 1 2 3 4 5 6 7

3 7
7

7
52

Warnsdorf’s rule states that the moves sould be tried out in the order

(0, 1), (0, 5), (2, 5), (3, 4), (3, 2)

Whenever there are ties, the correspoding onward moves can be in any or-
der. When calculating the number of onward moves for each field, we do not
count moves that revisit any field already visited.

Tasks (file knight3.scala)

(3a) orderered-moves

(3b) first-closed tour heuristics; up to 6 × 6

(3c) first tour heuristics; up to 50 × 50

4


