
Part 10 (Scala)
“If there’s one feature that makes Scala,

‘Scala’, I would pick implicits.”
— Martin Odersky (creator of the Scala language)

This part is about a small programming language called brainf***. The part is
worth 10% and you need to submit on 15 January at 4pm.

Important

• Make sure the files you submit can be processed by just calling
scala <<filename.scala>> on the commandline.1 Use the template files
provided and do not make any changes to arguments of functions or to
any types. You are free to implement any auxiliary function you might
need.

• Do not leave any test cases running in your code because this might
slow down your program! Comment out test cases before submission,
otherwise you might hit a time‑out.

• Do not use any mutable data structures in your submissions! They are
not needed. This means you cannot create new Arrays or ListBuffers,
for example.

• Do not use return in your code! It has a different meaning in Scala than
in Java. It changes the meaning of your program, and you should never
use it.

• Do not use var! This declares a mutable variable. Only use val!

• Do not use any parallel collections! No .par therefore! Our testing and
marking infrastructure is not set up for it.

Also note that the running time of each part will be restricted to a maximum of
30 seconds on my laptop.

Disclaimer

It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

1All major OSes, including Windows, have a commandline. So there is no good reason to not
download Scala, install it and run it on your own computer. Just do it!

1

Reference Implementation
As usual, this Scala assignment comes with a reference implementation in form
of two jar‑files. You can download them from KEATS. They allow you to run
any test cases on your own computer. For example you can call Scala on the
command line with the option ‐cp bf.jar and then query any function from
the bf.scala template file. You have to prefix the calls with CW10a and CW10b,
respectively. For example

$ scala ‐cp bf.jar
scala> import CW10a._
scala> run(load_bff("sierpinski.bf")) ; ()

*
* *

* *
* * * *

* *
* * * *

* * * *
* * * * * * * *

* *
* * * *

* * * *
* * * * * * * *

* * * *
* * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * * * *

* *
* * * *

* * * *
* * * * * * * *

* * * *
* * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * * * *

* * * *
* * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *
* *

2

Part A (6 Marks)
Coming from Java or C++, you might think Scala is a rather esoteric program‑
ming language. But remember, some serious companies have built their busi‑
ness on Scala.2 I claim functional programming is not a fad. And there are far,
far more esoteric languages out there. One is called brainf***. You are asked in
this part to implement an interpreter for this language.

Urban Müller developed brainf*** in 1993. A close relative of this language
was already introduced in 1964 by Corado Böhm, an Italian computer pioneer.
The main feature of brainf*** is its minimalistic set of instructions—just 8 in‑
structions in total and all of which are single characters. Despite the minimal‑
ism, this language has been shown to be Turing complete…if this doesn’t ring
any bell with you: it roughlymeans that every(!) algorithm can, in principle, be
implemented in brainf***. It just takes a lot of determination and quite a lot of
memory resources. Some relatively sophisticated sample programs in brainf***
are given in the file bf.scala, including a brainf*** program for the Sierpinski
triangle and the Mandelbrot set. There seems to be even a dedicated Windows
IDE for bf programs, though I amnot surewhether this is just an elaborateApril
fools’ joke—judge yourself:

https://www.microsoft.com/en‐us/p/brainf‐ck/9nblgggzhvq5

As mentioned above, brainf*** has 8 single‑character commands, namely '>',
'<', '+', '‐', '.', ',', '[' and ']'. Every other character is considered a
comment. Brainf*** operates on memory cells containing integers. For this it
uses a single memory pointer that points at each stage to onememory cell. This
pointer can be moved forward by one memory cell by using the command '>',
and backward by using '<'. The commands '+' and '‐' increase, respectively
decrease, by 1 the content of the memory cell to which the memory pointer
currently points to. The commands for input/output are ',' and '.'. Output
works by reading the content of the memory cell to which the memory pointer
points to and printing it out as an ASCII character. Input works the other way,
taking some user input and storing it in the cell to which the memory pointer
points to. The commands '[' and ']' are looping constructs. Everything in
between '[' and ']' is repeated until a counter (memory cell) reaches zero. A
typical program in brainf*** looks as follows:

++++++++[>++++[>++>+++>+++>+<<<<‐]>+>+>‐>>+[<]<‐]>>.>‐‐‐.++
+++++..+++.>>.<‐.<.+++.‐‐‐‐‐‐.‐‐‐‐‐‐‐‐.>>+.>++.

This one prints out Hello World…obviously ;o)
2https://en.wikipedia.org/wiki/Scala_(programming_language)#Companies

3

https://www.microsoft.com/en-us/p/brainf-ck/9nblgggzhvq5
https://en.wikipedia.org/wiki/Scala_(programming_language)#Companies

Tasks (file bf.scala)

(1) Write a function that takes a filename (a string) as an argument and re‑
quests the corresponding file from disk. It returns the content of the file
as a string. If the file does not exists, the function should return the empty
string.

[1 Mark]

(2) Brainf*** memory is represented by a Map from integers to integers. The
empty memory is represented by Map(), that is nothing is stored in the
memory; Map(0 ‐> 1, 2 ‐> 3) stores 1 at memory location 0, and at 2 it
stores 3. The convention is that if we query the memory at a location that
is not defined in the Map, we return 0. Write a ‘safe‑read’ function, sread,
that takes amemory (a Map) and amemory pointer (an Int) as arguments,
and ‘safely’ reads the corresponding memory location. If the Map is not
defined at the memory pointer, sread returns 0.
Write another function write, which takes a memory, a memory pointer
and an integer value as arguments and updates the Mapwith the value at
the givenmemory location. As usual, the Map is not updated ‘in‑place’ but
a new map is created with the same data, except the new value is stored
at the given memory pointer. [1 Mark]

(3) Write two functions, jumpRight and jumpLeft, that are needed to imple‑
ment the loop constructs in brainf***. They take a program (a String) and
a program counter (an Int) as arguments and move right (respectively
left) in the string in order to find the matching opening/closing bracket.
For example, given the following program with the program counter in‑
dicated by an arrow:

‐‐[.
↑
.+>‐‐],>,++

then the matching closing bracket is in 9th position (counting from 0) and
jumpRight is supposed to return the position just after this

‐‐[..+>‐‐],
↑
>,++

meaning it jumps to after the loop. Similarly, if you are in 8th position,
then jumpLeft is supposed to jump to just after the opening bracket (that
is jumping to the beginning of the loop):

‐‐[..+>‐‐
↑
],>,++

jumpLeft−→ ‐‐[.
↑
.+>‐‐],>,++

4

Unfortunately we have to take into account that there might be other
opening and closing brackets on the ‘way’ to find the matching bracket.
For example in the brainf*** program

‐‐[.
↑
.[+>]‐‐],>,++

we do not want to return the index for the '‐' in the 9th position, but the
program counter for ',' in 12th position. The easiest to find out whether
a bracket is matched is by using levels (which are the third argument in
jumpLeft and jumpLeft). In case of jumpRight you increase the level by
onewhenever you find an opening bracket and decrease by one for a clos‑
ing bracket. Then in jumpRight you are looking for the closing bracket
on level 0. For jumpLeft you do the opposite. In this way you can find
matching brackets in strings such as

‐‐[.
↑
.[[‐]+>[.]]‐‐],>,++

for which jumpRight should produce the position:

‐‐[..[[‐]+>[.]]‐‐],
↑
>,++

It is also possible that the position returned by jumpRight or jumpLeft
is outside the string in cases where there are no matching brackets. For
example

‐‐[.
↑
.[[‐]+>[.]]‐‐,>,++

jumpRight−→ ‐‐[..[[‐]+>[.]]‐‐>,++
↑

[2 Marks]

(4) Write a recursive function compute that runs a brainf*** program. It takes
a program, a program counter, a memory pointer and a memory as ar‑
guments. If the program counter is outside the program string, the ex‑
ecution stops and compute returns the memory. If the program counter
is inside the string, it reads the corresponding character and updates the
program counter pc, memory pointer mp and memory mem according to
the rules shown in Figure 1. It then calls recursively compute with the
updated data. The most convenient way to implement the brainf**k rules
in Scala is to use pattern‑matching and to calculate a triple consisting of
the updated pc, mp and mem.
Write another function run that calls computewith a given brainfu** pro‑
gram andmemory, and the program counter andmemory pointer set to 0.

5

Like compute, it returns the memory after the execution of the program
finishes. You can test your brainf**k interpreter with the Sierpinski trian‑
gle or the Hello world programs (they seem to be particularly useful for
debugging purposes), or have a look at

https://esolangs.org/wiki/Brainfuck

[2 Marks]

Part B (4 Marks)
I am sure you agree while it is fun to look at bf‑programs, like the Sierpinski
triangle or the Mandelbrot program, being interpreted, it is much more fun to
write a compiler for the bf‑language.

Tasks (file bfc.scala)

(5) Compilers in general attempt to make programs run faster by precom‑
puting as much information as possible before running the program. In
our case we can precompute the addresses where we need to jump at the
beginning and end of loops.
For this write a function jtable that precomputes the “jump table” for a
bf‑program. This function takes a bf‑program as an argument and returns
a Map[Int, Int]. The purpose of this Map is to record the information,
in cases a pc‑position points to a ’[’ or a ’]’, to which pc‑position do we
need to jump next?
For example for the program

+++++[‐>++++++++++<]>‐‐<+++[‐>>++++++++++
<<]>>++<<‐‐‐‐‐‐‐‐‐‐[+>.>.<+<]

we obtain the Map (note the precise numbers might differ depending on
white spaces etc. in the bf‑program):

Map(69 ‐> 61, 5 ‐> 20, 60 ‐> 70, 27 ‐> 44, 43 ‐> 28, 19 ‐> 6)

This Map states that for the ’[’ on position 5, we need to jump to posi‑
tion 20, which is just after the corresponding ’]’. Similarly, for the ’]’ on
position 19, we need to jump to position 6, which is just after the ’[’ on
position 5, and so on. The idea is to not calculate this information each
time we hit a bracket, but just look up this information in the jtable.
Then adapt the compute and run functions from Part 1 in order to take
advantage of the information stored in the jtable. This means whenever

6

https://esolangs.org/wiki/Brainfuck

'>' • pc+ 1
• mp+ 1
• mem unchanged

'<' • pc+ 1
• mp− 1
• mem unchanged

'+' • pc+ 1
• mp unchanged
• mem updated with mp ‐> mem(mp) + 1

'‐' • pc+ 1
• mp unchanged
• mem updated with mp ‐> mem(mp) ‐ 1

'.' • pc+ 1
• mp and mem unchanged
• print out mem(mp) as a character

',' • pc+ 1
• mp unchanged
• mem updated with mp ‐> input
the input is given by Console.in.read().toByte

'[' if mem(mp) == 0 then
• pc = jumpRight(prog, pc + 1, 0)
• mp and mem unchanged

otherwise if mem(mp) != 0 then
• pc+ 1
• mp and mem unchanged

']' if mem(mp) != 0 then
• pc = jumpLeft(prog, pc ‐ 1, 0)
• mp and mem unchanged

otherwise if mem(mp) == 0 then
• pc+ 1
• mp and mem unchanged

any
other
char

• pc+ 1
• mp and mem unchanged

Figure 1: The rules for how commands in the brainf*** language update the
program counter pc, the memory pointer mp and the memory mem.

7

jumpLeft and jumpRight was called previously, you should look up the
jump address in the jtable. Feel free to reuse the function jumpLeft and
jumpRight for calculating the jtable. [1 Mark]

(6) Compilers try to eliminate any “dead” code that could slow down pro‑
grams and also perform what is often called peephole optimisations.3 For
the latter consider that it is difficult for compilers to comprehend what
is intended with whole programs, but they are very good at finding out
what small snippets of code do, and then try to generate faster code for
such snippets.
In our case, dead code is everything that is not a bf‑command. There‑
fore write a function optimise which deletes such dead code from a bf‑
program. Moreover this function should replace every substring of the
form [‐] by a new command 0. The idea is that the loop [‐] just resets
the memory at the current location to 0. It is more efficient to do this in a
single step, rather than stepwise in a loop as in the original bf‑programs.
In the extended compute3 and run3 functions you should implement this
command by writing 0 to mem(mp), that is use write(mem, mp, 0) as the
rule for the command 0. The easiest way to modify a string in this way
is to use the regular expression """[^<>+‐.,\[\]]""", which recognises
everything that is not a bf‑command. Similarly, the regular expression
"""\[‐\]""" finds all occurrences of [‐]. By using the Scala method
.replaceAll you can replace substrings with new strings.

[1 Mark]

(7) Finally, real compilers try to take advantage of CPUswhich often provide
complex operations in hardware that can combine many smaller instruc‑
tions into a single faster instruction.
In our case we can optimise the several single increments performed at
a memory cell, for example ++++, by a single “increment by 4”. For this
optimisationwe just have tomake sure these single increments are all next
to each other. Similar optimisations should apply for the bf‑commands
‐, < and >, which can all be replaced by extended versions that take the
amount of the increment (decrement) into account. We will do this by
introducing two‑character bf‑commands. For example

original bf‑cmds replacement
+ +A
++ +B
+++ +C
… …
+++....++ +Z

(these are 26 +’s)
3https://en.wikipedia.org/wiki/Peephole_optimization

8

https://en.wikipedia.org/wiki/Peephole_optimization

If there aremore than 26 +’s in a row, thenmore than one “two‑character”
bf‑commands need to be generated (the idea is thatmore than 26 copies of
a single bf‑command in a row is a rare occurrence in actual bf‑programs).
Similar replacements apply for ‐, < and >, but all other bf‑commands
should be unaffected by this change.
For this write a function combine which replaces sequences of repeated
increment and decrement commands by appropriate two‑character com‑
mands. In the functions compute4 and run4, the “combine” and the op‑
timisation from (6) should be performed. Make sure that when a two‑
character bf‑command is encountered you need to increase the pc‑counter
by two in order to progress to the next command. For example

combine(optimise(load_bff("benchmark.bf")))

generates the improved program

>A+B[<A+M>A‐A]<A[[…

for the original benchmark program

>++[<+++++++++++++>‐]<[[…

As you can see, the compiler bets on saving a lot of time on the +B and
+M steps so that the optimisations is worthwhile overall (of course for the
>A’s and so on, the compiler incurs a penalty). Luckily, after you have per‑
formed all optimisations in (5) ‑ (7), you can expect that the benchmark.bf
program runs four to five times faster. You can also test whether your
compiler produces the correct result by for example testing

run(load_bff("sierpinski.bf")) == run4(load_bff("sierpinski.bf"))

which should return true for all the different compiler stages.
[2 Marks]

9

