
August Exam (Scala): Chat Log Mining
This coursework is worth 50%. It is about mining a log of an online chat be‑
tween 85 participants. The log is given as a csv‑list in the file log.csv. The log
is an unordered list containing information which message has been sent, by
whom, when and in response to which other message. Each message has also
a number and a unique hash code.

Important: Make sure the file you submit can be processed by just calling

scala <<filename.scala>>

Do not use any mutable data structures in your submission! They are not
needed. This means you cannot use ListBuffers, Arrays, for example. Do
not use return in your code! It has a different meaning in Scala, than in Java.
Do not use var! This declares a mutable variable.

Disclaimer
It should be understood that the work you submit represents your own effort!
You have not copied from anyone or anywhere else. An exception is the Scala
code I showed during the lectures or uploaded to KEATS, which you can freely
use.

Background
The fields in the file log.csv are organised as follows:

counter, id, time_date, name, country, parent_id, msg

Each line in this file contains the data for a single message. The field counter
is an integer number given to each message; id is a unique hash string for a
message; time_date is the time when the message was sent; name and country
is data about the author of themessage, whereby sometimes the authors left the
country information empty; parent_id is a hash specifying which other mes‑
sage the message answers (this can also be empty). Msg is the actual message
text. Be careful for the tasks below that this text can contain commas and needs
to be treated specialwhen the line is split up byusing line.split(",").toList.
Tasks (2) and (3) are about processing this data and storing it into the Rec‑data‑
structure, which is pre‑defined in the file resit.scala:

Rec(num: Int,
msg_id: String,
date: String,
msg: String,

1

author: String,
country: Option[String],
reply_id : Option[String],
parent: Option[Int] = None,
children: List[Int] = Nil)

The transformation into a Rec‑data‑structure is a two‑step process where first
the fields for parents and children are given default values. This information is
then filled in in a second step.

The main information that will be computed in the tasks below is from
which country authors are and how many authors are from each country. The
last task will also rank which messages have been the most popular in terms of
how many replies they received (this will computed according to be the num‑
ber children, grand‑children and so on of a message).

Tasks
(1) The function get_csv takes a file name as argument. It should read the

corresponding file and return its content. The content should be returned
as a list of strings, namely a string for each line in the file. Since the file is
a csv‑file, the first line (the header) should be dropped in the result. Lines
are separated by "\n". For the file log.csv there should be a list of 680
separate strings.

[5% Marks]

(2) The function process_line takes a single line from the csv‑file (as gener‑
ated by get_csv) and creates a Rec(ord) data structure. This data struc‑
ture is pre‑defined in the Scala file.
For processing a line, you should use the function

<<some_line>>.split(",").toList

in order to separate the fields. HOWEVERBECAREFUL that themessage
text in the last field of log.cvs can contain commas and therefore the split
will not always result in a list of only 7 elements. You need to concatenate
anything beyond the 7th field into a single string before assigning the field
msg.

[10% Marks]

(3) Each record in the log contains a unique hash code identifying each mes‑
sage. For example

"5ebeb459ac278d01301f1497"

2

Some messages also contain a hash code identifying the parent message
(that is to which question they reply). The function post_process fills in
the information about potential children and a potential parent message.
The auxiliary function get_children takes a record e and a record list rs
as arguments, and returns the list of all direct children (children have the
hash code of e as reply_id). The list of children is returned as a list of
nums. The nums can be used later as indexes in a Rec‑list.
The auxiliary function get_parent returns the number of the record cor‑
responding to the reply_id (encoded as Some if there exists one, other‑
wise it returns None).
In order to update a record, say r, with some additional information, you
can use the Scala code

r.copy(parent =,
children =)

[10% Marks]

(4) The functions get_countries and get_countries_numbers calculate the
countries where message authors are coming from and how many au‑
thors come from each country (returned as a Map from countries to Inte‑
gers). In case an author did not specify a country, the empty string should
be returned.

[10% Mark]

(5) This task identifies the most popular questions in the log, whereby popu‑
larity is measured in terms of howmany follow‑up questions were asked.
We call such questions as belonging to a thread. It can be assumed that in
log.csv there are no circular references, that is no question refers to a
follow‑up question as parent.
The function ordered_thread_sizes orders the message threads accord‑
ing to how many answers were given for one message (that is how many
children, grand‑children and so on one message has).
The auxiliary function search enumerates all children, grand‑children
and so on for a given record r (including the record r itself). Search re‑
turns these children as a list of Recs.
The function thread_size generates for a record, say r, a pair consisting
of the number of r and the number of all children as produced by search.
The numbers are the integers given for eachmessage—for log.cvs a num‑
ber is between 0 and 679.
The function ordered_thread_sizes orders the list of pairs according to
which thread in the chat is the longest (the longest should be first).

[15% Mark]

3

