
Coursework 9 (Scala)
This coursework isworth 10%. It is about a small programming language called
brainf***. The first part is due on 13 December at 11pm; the second, more ad-
vanced part, is due on 20 December at 11pm.

Important:

• Make sure the files you submit can be processed by just calling
scala <<filename.scala>> on the commandline.1 Use the template files
provided and do not make any changes to arguments of functions or to
any types. You are free to implement any auxiliary function you might
need.

• Do not leave any test cases running in your code because this might
slow down your program! Comment test cases out before submission,
otherwise you might hit a time-out.

• Do not use any mutable data structures in your submissions! They are
not needed. This means you cannot create new Arrays or ListBuffers,
for example.

• Do not use return in your code! It has a different meaning in Scala than
in Java.

• Do not use var! This declares a mutable variable. Only use val!

• Do not use any parallel collections! No .par therefore! Our testing and
marking infrastructure is not set up for it.

Also note that the running time of each part will be restricted to a maximum of
30 seconds on my laptop.

Disclaimer

It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Part 1 (6 Marks)
Coming from Java or C++, you might think Scala is a rather esoteric program-
ming language. But remember, some serious companies have built their busi-
ness on Scala.2 And there are far, far more esoteric languages out there. One

1All major OSes, including Windows, have a commandline. So there is no good reason to not
download Scala, install it and run it on your own computer. Just do it!

2https://en.wikipedia.org/wiki/Scala_(programming_language)#Companies

1

https://en.wikipedia.org/wiki/Scala_(programming_language)#Companies

is called brainf***. You are asked in this part to implement an interpreter and
compiler for this language.

Urban Müller developed brainf*** in 1993. A close relative of this language
was already introduced in 1964 by Corado Böhm, an Italian computer pioneer.
The main feature of brainf*** is its minimalistic set of instructions—just 8 in-
structions in total and all of which are single characters. Despite the minimal-
ism, this language has been shown to be Turing complete…if this doesn’t ring
any bell with you: it roughly means that every algorithmwe know can, in prin-
ciple, be implemented in brainf***. It just takes a lot of determination and quite
a lot of memory resources. Some relatively sophisticated sample programs in
brainf*** are given in the file bf.scala, including a brainf*** program for the
Sierpinski triangle and Mandelbot set.

As mentioned above, brainf*** has 8 single-character commands, namely '>',
'<', '+', '-', '.', ',', '[' and ']'. Every other character is considered a
comment. Brainf*** operates on memory cells containing integers. For this it
uses a single memory pointer that points at each stage to onememory cell. This
pointer can be moved forward by one memory cell by using the command '>',
and backward by using '<'. The commands '+' and '-' increase, respectively
decrease, by 1 the content of the memory cell to which the memory pointer
currently points to. The commands for input/output are ',' and '.'. Output
works by reading the content of the memory cell to which the memory pointer
points to and printing it out as an ASCII character. Input works the other way,
taking some user input and storing it in the cell to which the memory pointer
points to. The commands '[' and ']' are looping constructs. Everything in
between '[' and ']' is repeated until a counter (memory cell) reaches zero. A
typical program in brainf*** looks as follows:

++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++++++
..+++.>>.<-.<.+++.------.--------.>>+.>++.

This one prints out Hello World…obviously.

Tasks (file bf.scala)

(1) Write a function that takes a file name as argument and and requests the
corresponding file from disk. It returns the content of the file as a String.
If the file does not exists, the function should return the empty string.

[1 Mark]

(2) Brainf*** memory is represented by a Map from integers to integers. The
empty memory is represented by Map(), that is nothing is stored in the
memory; Map(0 -> 1, 2 -> 3) stores 1 at memory location 0, and at 2 it
stores 3. The convention is that if we query the memory at a location that
is not defined in the Map, we return 0. Write a function, sread, that takes a
memory (a Map) and a memory pointer (an Int) as argument, and ‘safely’

2

reads the corresponding memory location. If the Map is not defined at the
memory pointer, sread returns 0.
Write another function write, which takes a memory, a memory pointer
and an integer value as argument and updates the Map with the value at
the givenmemory location. As usual the Map is not updated ‘in-place’ but
a newmap is created with the same data, except the value is stored at the
given memory pointer. [1 Mark]

(3) Write two functions, jumpRight and jumpLeft that are needed to imple-
ment the loop constructs of brainf***. They take a program (a String) and
a program counter (an Int) as argument andmove right (respectively left)
in the string in order to find the matching opening/closing bracket. For
example, given the following program with the program counter indi-
cated by an arrow:

--[.
↑
.+>--],>,++

then the matching closing bracket is in 9th position (counting from 0) and
jumpRight is supposed to return the position just after this

--[..+>--],
↑
>,++

meaning it jumps to after the loop. Similarly, if you are in 8th position
then jumpLeft is supposed to jump to just after the opening bracket (that
is jumping to the beginning of the loop):

--[..+>--
↑
],>,++

jumpLeft−→ --[.
↑
.+>--],>,++

Unfortunately we have to take into account that there might be other
opening and closing brackets on the ‘way’ to find the matching bracket.
For example in the brainf*** program

--[.
↑
.[+>]--],>,++

we do not want to return the index for the '-' in the 9th position, but the
program counter for ',' in 12th position. The easiest to find out whether
a bracket is matched is by using levels (which are the third argument in
jumpLeft and jumpLeft). In case of jumpRight you increase the level by
onewhenever you find an opening bracket and decrease by one for a clos-
ing bracket. Then in jumpRight you are looking for the closing bracket
on level 0. For jumpLeft you do the opposite. In this way you can find
matching brackets in strings such as

3

--[.
↑
.[[-]+>[.]]--],>,++

for which jumpRight should produce the position:

--[..[[-]+>[.]]--],
↑
>,++

It is also possible that the position returned by jumpRight or jumpLeft
is outside the string in cases where there are no matching brackets. For
example

--[.
↑
.[[-]+>[.]]--,>,++

jumpRight−→ --[..[[-]+>[.]]-->,++
↑

[2 Marks]

(4) Write a recursive function run that executes a brainf*** program. It takes
a program, a program counter, a memory pointer and a memory as argu-
ments. If the program counter is outside the program string, the execu-
tion stops and run returns the memory. If the program counter is inside
the string, it reads the corresponding character and updates the program
counter pc, memory pointer mp and memory mem according to the rules
shown in Figure 1. It then calls recursively run with the updated data.
The most convenient way to implement the rules in run is to use paĴern-
matching and calculating a triple consisting of the new pc, mp and mem.
Write another function start that calls run with a given brainfu** pro-
gram and memory, and the program counter and memory pointer set
to 0. Like run it returns the memory after the execution of the program
finishes. You can test your brainf**k interpreter with the Sierpinski trian-
gle or the Hello world programs (they seem to be particularly useful for
debugging purposes), or have a look at

https://esolangs.org/wiki/Brainfuck

[2 Marks]

Part 2 (4 Marks)
While it is fun to look at bf-programs, like the Sierpinski triangle or the Man-
delbrot program, being interpreted, it is much more fun to write a compiler for
the bf-language.

4

https://esolangs.org/wiki/Brainfuck

'>' • pc+ 1
• mp+ 1
• mem unchanged

'<' • pc+ 1
• mp− 1
• mem unchanged

'+' • pc+ 1
• mp unchanged
• mem updated with mp -> mem(mp) + 1

'-' • pc+ 1
• mp unchanged
• mem updated with mp -> mem(mp) - 1

'.' • pc+ 1
• mp and mem unchanged
• print out mem(mp) as a character

',' • pc+ 1
• mp unchanged
• mem updated with mp -> input
the input is given by Console.in.read().toByte

'[' if mem(mp) == 0 then
• pc = jumpRight(prog, pc + 1, 0)
• mp and mem unchanged

otherwise if mem(mp) != 0 then
• pc+ 1
• mp and mem unchanged

']' if mem(mp) != 0 then
• pc = jumpLeft(prog, pc - 1, 0)
• mp and mem unchanged

otherwise if mem(mp) == 0 then
• pc+ 1
• mp and mem unchanged

any
other
char

• pc+ 1
• mp and mem unchanged

Figure 1: The rules for how commands in the brainf*** language update the
program counter pc, memory pointer mp and memory mem.

5

