Coursework 8 (Scala, Regular Expressions, Brainf***)

This coursework is worth 10%. Itis about regular expressions, pattern matching
and an interpreter. The first part is due on 30 November at 11pm; the second,
more advanced part, is due on 21 December at 11pm. In the first part, you
are asked to implement a regular expression matcher based on derivatives of
regular expressions. The reason is that regular expression matching in Java can
sometimes be extremely slow. The advanced part is about an interpreter for a
very simple programming language.

Important:

* Make sure the files you submit can be processed by just calling
scala <<filename.scala>> on the commandline. Use the template files
provided and do not make any changes to arguments of functions or to
any types. You are free to implement any auxiliary function you might
need.

* Do not use any mutable data structures in your submissions! They are
not needed. This means you cannot create new Arrays or ListBuffers,
for example.

* Do not use return in your code! It has a different meaning in Scala, than
in Java.

* Do not use var! This declares a mutable variable. Only use val!

* Do not use any parallel collections! No .par therefore! Our testing and
marking infrastructure is not set up for it.

Also note that the running time of each part will be restricted to a maximum of
360 seconds on my laptop

Disclaimer

It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Part 1 (6 Marks)

The task is to implement a regular expression matcher that is based on deriva-
tives of regular expressions. Most of the functions are defined by recursion over
regular expressions and can be elegantly implemented using Scala’s pattern-
matching. The implementation should deal with the following regular expres-
sions, which have been predefined in the file re.scala:

0 cannot match anything

1 can only match the empty string

c can match a character (in this case c)

r1 + 1, can match a string either with r; or with rp
ri-rp can match the first part of a string with r; and
then the second part with r;

can match zero or more times r

Why? Knowing how to match regular expressions and strings will let you
solve a lot of problems that vex other humans. Regular expressions are one
of the fastest and simplest ways to match patterns in text, and are endlessly
useful for searching, editing and analysing data in all sorts of places (for exam-
ple analysing network traffic in order to detect security breaches). However,
you need to be fast, otherwise you will stumble over problems such as recently
reported at

e http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
e https://vimeo.com/112065252
e http://davidvgalbraith.com/how-1i-fixed-atom/

Tasks (file re.scala)

(la) Implement a function, called nullable, by recursion over regular expres-
sions. This function tests whether a regular expression can match the
empty string. This means given a regular expression it either returns true

or false.
nullable(0) o false
nullable(1) L true
nullable(c) o false
nullable(ry + 17) &of nullable(r1) V nullable(r;)
nullable(ry - 17) o nullable(r1) A nullable(r;)
nullable(r*) L brue

[1 Mark]

(1b) Implement a function, called der, by recursion over regular expressions.
It takes a character and a regular expression as arguments and calculates
the derivative regular expression according to the rules:

http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://vimeo.com/112065252
http://davidvgalbraith.com/how-i-fixed-atom/

(1c)

der ¢ (0) = 0

der ¢ (1) L

der ¢ (d def ifc =d then 1else 0
der ¢ (1 +12) &of (der c r1) + (der ¢ rp)
der ¢ (r1-13) o if nullable(ry)

then ((der c r1) - rp) + (der c rp)
else (der cry) - 1o

der ¢ (1) = (dercr)-(r")

For example given the regular expression r = (a - b) - ¢, the derivatives
w.r.t. the characters a, b and ¢ are

derar = (1-b)-c (=71
derbr = (0-D)-c
dercr = (0-b)-c

Let ' stand for the first derivative, then taking the derivatives of ¥’ w.r.t. the
characters g, b and c gives

derar’ = ((0-b)+0)-c
derbr = ((0:-b)+1)-c (=7
dercr’ = ((0-b)+0)-c

One more example: Let 7’ stand for the second derivative above, then
taking the derivatives of r”” w.r.t. the characters 4, b and c gives

derar” = ((0-b)+0)-c+0
derbr” = ((0-b)+0)-c+0
dercr” = ((0-b)+0)-c+1 (isnullable)

Note, the last derivative can match the empty string, that is it is nullable.
[1 Mark]

Implement the function simp, which recursively traverses a regular ex-
pression from the inside to the outside, and on the way simplifies every
regular expression on the left (see below) to the regular expression on the
right, except it does not simplify inside *-regular expressions.

- o
S =S o

0+r
r+r

1111111

For example the regular expression
(r1+0)- 14+ ((14172) +13)-(r4-0)

simplifies to just ;. Hint: Regular expressions can be seen as trees and
there are several methods for traversing trees. One of them corresponds
to the inside-out traversal, which is sometimes also called post-order traver-
sal. Furthermore, remember numerical expressions from school times:
there you had expressions like u + ...+ (1-x) —...(z+ (y-0))... and
simplification rules that looked very similar to rules above. You would
simplify such numerical expressions by replacing for example the i - 0 by
0, or 1 - x by x, and then look whether more rules are applicable. If you or-
ganise the simplification in an inside-out fashion, it is always clear which
rule should be applied next. [2 Marks]

(1d) Implement two functions: The first, called ders, takes a list of characters
and a regular expression as arguments, and builds the derivative w.r.t. the
list as follows:

ders (Nil) r ey,

ders (c:cs)r &

ders cs (simp(der c)
Note that this function is different from der, which only takes a single
character.

The second function, called matcher, takes a string and a regular expres-
sion as arguments. Itbuilds first the derivatives according to ders and after
that tests whether the resulting derivative regular expression can match
the empty string (using nullable). For example the matcher will produce
true for the regular expression (a - b) - c and the string abc, but false if you
give it the string ab. [1 Mark]

(le) Implement a function, called size, by recursion over regular expressions.
If a regular expression is seen as a tree, then size should return the number
of nodes in such a tree. Therefore this function is defined as follows:

def

size(0) = 1
size(1) L

. def
size(c) = 1
size(r1 +17) L size(r1) + size(r2)
size(r - 12) L size(r1) + size(rp)
size(r*) L size(r)

You can use size in order to test how much the ‘evil” regular expression
(a*)* - b grows when taking successive derivatives according the letter a
without simplification and then compare it to taking the derivative, but
simplify the result. The sizes are given in re.scala. [1 Mark]

Background

Although easily implementable in Scala, the idea behind the derivative function
might not so easy to be seen. To understand its purpose better, assume a regular
expression * can match strings of the form c:: cs (that means strings which start
with a character ¢ and have some rest, or tail, cs). If you take the derivative of
r with respect to the character c, then you obtain a regular expression that can
match all the strings cs. In other words, the regular expression der ¢ r can match
the same strings c:: cs that can be matched by r, except that the c is chopped off.

Assume now r can match the string abc. If you take the derivative according
to a then you obtain a regular expression that can match bc (it is abc where
the a has been chopped off). If you now build the derivative der b (der a r)
you obtain a regular expression that can match the string c (it is bc where b
is chopped off). If you finally build the derivative of this according c, that is
der ¢ (der b (der a r)), you obtain a regular expression that can match the
empty string. You can test whether this is indeed the case using the function
nullable, which is what your matcher is doing.

The purpose of the simp function is to keep the regular expression small.
Normally the derivative function makes the regular expression bigger (see the
SEQ case and the example in (1b)) and the algorithm would be slower and
slower over time. The simp function counters this increase in size and the result
is that the algorithm is fast throughout. By the way, this algorithm is by Janusz
Brzozowski who came up with the idea of derivatives in 1964 in his PhD thesis.

https://en.wikipedia.org/wiki/Janusz_Brzozowski_(computer_scientist)

If you want to see how badly the regular expression matchers do in Java and
Python with the ‘evil’ regular expression, then have a look at the graphs below
(you can try it out for yourself: have a look at the file catastrophic.java on
KEATS). Compare this with the matcher you have implemented. How long can
the string of a’s be in your matcher and stay within the 30 seconds time limit?

Graph: (a*)* - b and strings a...a

n

—o—Python
—o— Java

time in secs

5 10 15 20 25 30

https://en.wikipedia.org/wiki/Janusz_Brzozowski_(computer_scientist)

Part 2 (4 Marks)

Comming from Java or C++, you might think Scala is a quite esotheric pro-
gramming language. But remember, some serious companies have built their
business on Scala. And there are far more esotheric languages out there. One
is called brainf***. Urban Miiller developed this language in 1993. A close rel-
ative was already introduced in ... by Corado B6hm, an Italian computer pi-
onier, who unfortunately died a few months ago. One feature of brainf*** is
its minimalistic set of instructions. It has just 8 instructions, all of which are
single characters. Despite this minimalism, this language, given enough mem-
ory, has been shown to be Turing complete. In this part you will implement an
interpreter for this language.

Tasks (file bf.scala)
(2a)

(2b)

(20)

