
Coursework 8 (Regular Expressions and Brainf***)
This coursework isworth 10%. It is about regular expressions, paĴernmatching
and an interpreter. The first part is due on 30 November at 11pm; the second,
more advanced part, is due on 21 December at 11pm. In the first part, you
are asked to implement a regular expression matcher based on derivatives of
regular expressions. The reason is that regular expression matching in Java can
sometimes be extremely slow. The advanced part is about an interpreter for a
very simple programming language.

Important:

• Make sure the files you submit can be processed by just calling
scala <<filename.scala>> on the commandline. Use the template files
provided and do not make any changes to arguments of functions or to
any types. You are free to implement any auxiliary function you might
need.

• Do not use any mutable data structures in your submissions! They are
not needed. This means you cannot create new Arrays or ListBuffers,
for example.

• Do not use return in your code! It has a different meaning in Scala, than
in Java.

• Do not use var! This declares a mutable variable. Only use val!

• Do not use any parallel collections! No .par therefore! Our testing and
marking infrastructure is not set up for it.

Also note that the running time of each part will be restricted to a maximum of
360 seconds on my laptop

Disclaimer
It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Part 1 (6 Marks)
The task is to implement a regular expression matcher that is based on deriva-
tives of regular expressions. Most of the functions are defined by recursion over
regular expressions and can be elegantly implemented using Scala’s paĴern-
matching. The implementation should deal with the following regular expres-
sions, which have been predefined in the file re.scala:

1

r ::= 0 cannot match anything
| 1 can only match the empty string
| c can match a character (in this case c)
| r1 + r2 can match a string either with r1 or with r2
| r1 · r2 can match the first part of a string with r1 and

then the second part with r2
| r∗ can match zero or more times r

Why? Knowing how to match regular expressions and strings will let you
solve a lot of problems that vex other humans. Regular expressions are one
of the fastest and simplest ways to match paĴerns in text, and are endlessly
useful for searching, editing and analysing data in all sorts of places (for exam-
ple analysing network traffic in order to detect security breaches). However,
you need to be fast, otherwise you will stumble over problems such as recently
reported at

• http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016

• https://vimeo.com/112065252

• http://davidvgalbraith.com/how-i-fixed-atom/

Tasks (file re.scala)

(1a) Implement a function, called nullable, by recursion over regular expres-
sions. This function tests whether a regular expression can match the
empty string. This means given a regular expression it either returns true
or false.

nullable(0) def
= false

nullable(1) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

[1 Mark]

(1b) Implement a function, called der, by recursion over regular expressions.
It takes a character and a regular expression as arguments and calculates
the derivative regular expression according to the rules:

2

http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://vimeo.com/112065252
http://davidvgalbraith.com/how-i-fixed-atom/

der c (0) def
= 0

der c (1) def
= 0

der c (d) def
= if c = d then 1 else 0

der c (r1 + r2)
def
= (der c r1) + (der c r2)

der c (r1 · r2)
def
= if nullable(r1)

then ((der c r1) · r2) + (der c r2)
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

For example given the regular expression r = (a · b) · c, the derivatives
w.r.t. the characters a, b and c are

der a r = (1 · b) · c (= r′)
der b r = (0 · b) · c
der c r = (0 · b) · c

Let r′ stand for the first derivative, then taking the derivatives of r′w.r.t. the
characters a, b and c gives

der a r′ = ((0 · b) + 0) · c
der b r′ = ((0 · b) + 1) · c (= r′′)
der c r′ = ((0 · b) + 0) · c

One more example: Let r′′ stand for the second derivative above, then
taking the derivatives of r′′ w.r.t. the characters a, b and c gives

der a r′′ = ((0 · b) + 0) · c + 0
der b r′′ = ((0 · b) + 0) · c + 0
der c r′′ = ((0 · b) + 0) · c + 1 (is nullable)

Note, the last derivative can match the empty string, that is it is nullable.
[1 Mark]

(1c) Implement the function simp, which recursively traverses a regular ex-
pression from the inside to the outside, and on the way simplifies every
regular expression on the left (see below) to the regular expression on the
right, except it does not simplify inside ∗-regular expressions.

r · 0 7→ 0
0 · r 7→ 0
r · 1 7→ r
1 · r 7→ r
r + 0 7→ r
0+ r 7→ r
r + r 7→ r

3

For example the regular expression

(r1 + 0) · 1+ ((1+ r2) + r3) · (r4 · 0)

simplifies to just r1. Hint: Regular expressions can be seen as trees and
there are several methods for traversing trees. One of them corresponds
to the inside-out traversal, which is sometimes also called post-order traver-
sal. Furthermore, remember numerical expressions from school times:
there you had expressions like u + . . . + (1 · x)− . . . (z + (y · 0)) . . . and
simplification rules that looked very similar to rules above. You would
simplify such numerical expressions by replacing for example the y · 0 by
0, or 1 · x by x, and then lookwhethermore rules are applicable. If you or-
ganise the simplification in an inside-out fashion, it is always clear which
rule should be applied next. [2 Marks]

(1d) Implement two functions: The first, called ders, takes a list of characters
and a regular expression as arguments, and builds the derivativew.r.t. the
list as follows:

ders (Nil) r def
= r

ders (c :: cs) r def
= ders cs (simp(der c r))

Note that this function is different from der, which only takes a single
character.
The second function, called matcher, takes a string and a regular expres-
sion as arguments. It builds first the derivatives according to ders and after
that tests whether the resulting derivative regular expression can match
the empty string (using nullable). For example the matcher will produce
true for the regular expression (a · b) · c and the string abc, but false if you
give it the string ab. [1 Mark]

(1e) Implement a function, called size, by recursion over regular expressions.
If a regular expression is seen as a tree, then size should return the number
of nodes in such a tree. Therefore this function is defined as follows:

size(0) def
= 1

size(1) def
= 1

size(c) def
= 1

size(r1 + r2)
def
= 1 + size(r1) + size(r2)

size(r1 · r2)
def
= 1 + size(r1) + size(r2)

size(r∗) def
= 1 + size(r)

You can use size in order to test how much the ‘evil’ regular expression
(a∗)∗ · b grows when taking successive derivatives according the leĴer a
without simplification and then compare it to taking the derivative, but
simplify the result. The sizes are given in re.scala. [1 Mark]

4

Background
Although easily implementable in Scala, the idea behind the derivative function
might not so easy to be seen. To understand its purpose beĴer, assume a regular
expression r can match strings of the form c :: cs (that means strings which start
with a character c and have some rest, or tail, cs). If you take the derivative of
r with respect to the character c, then you obtain a regular expression that can
match all the strings cs. In otherwords, the regular expression der c r canmatch
the same strings c :: cs that can be matched by r, except that the c is chopped off.

Assume now r canmatch the string abc. If you take the derivative according
to a then you obtain a regular expression that can match bc (it is abc where
the a has been chopped off). If you now build the derivative der b (der a r)
you obtain a regular expression that can match the string c (it is bc where b
is chopped off). If you finally build the derivative of this according c, that is
der c (der b (der a r)), you obtain a regular expression that can match the
empty string. You can test whether this is indeed the case using the function
nullable, which is what your matcher is doing.

The purpose of the simp function is to keep the regular expression small.
Normally the derivative function makes the regular expression bigger (see the
SEQ case and the example in (1b)) and the algorithm would be slower and
slower over time. The simp function counters this increase in size and the result
is that the algorithm is fast throughout. By the way, this algorithm is by Janusz
Brzozowski who came upwith the idea of derivatives in 1964 in his PhD thesis.

https://en.wikipedia.org/wiki/Janusz_Brzozowski_(computer_scientist)

If youwant to see how badly the regular expressionmatchers do in Java and
Python with the ‘evil’ regular expression, then have a look at the graphs below
(you can try it out for yourself: have a look at the file catastrophic.java on
KEATS). Compare this with the matcher you have implemented. How long
can the string of a’s be in your matcher and still stay within the 30 seconds time
limit?

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Graph: (a∗)∗ · b and strings a . . . a︸ ︷︷ ︸
n

Python
Java

5

https://en.wikipedia.org/wiki/Janusz_Brzozowski_(computer_scientist)

Part 2 (4 Marks)
Coming from Java or C++, you might think Scala is a quite esoteric program-
ming language. But remember, some serious companies have built their busi-
ness on Scala.1 And there are far more esoteric languages out there. One is
called brainf***. You are asked in this part to implement an interpreter for this
language.

Urban Müller developed brainf*** in 1993. A close relative of this language
was already introduced in 1964 by Corado Böhm, an Italian computer pioneer,
who unfortunately died a few months ago. The main feature of brainf*** is its
minimalistic set of instructions—just 8 instructions in total and all of which are
single characters. Despite the minimalism, this language has been shown to be
Turing complete…if this doesn’t ring any bell with you: it roughlymeans every
algorithm we know can, in principle, be implemented in brainf***. It just takes
a lot of determination and quite a lot of memory resources. Some relatively
sophisticated example programs in brainf*** are given in the file bf.scala.

As mentioned above, brainf*** has 8 single-character commands, namely '>',
'<', '+', '-', '.', ',', '[' and ']'. Every other character is considered a
comment. Brainf*** operates on memory cells containing integers. For this it
uses a single memory pointer that points at each stage to onememory cell. This
pointer can be moved forward by one memory cell by using the command '>',
and backward by using '<'. The commands '+' and '-' increase, respectively
decrease, by 1 the content of the memory cell to which the memory pointer
currently points to. The commands for input/output are ',' and '.'. Output
works by reading the content of the memory cell to which the memory pointer
points to and printing it out as an ASCII character. Input works the other way,
taking some user input and storing it in the cell to which the memory pointer
points to. The commands '[' and ']' are looping constructs. Everything in
between '[' and ']' is repeated until a counter (memory cell) reaches zero. A
typical program in brainf*** looks as follows:

++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++++++
..+++.>>.<-.<.+++.------.--------.>>+.>++.

This one prints out Hello World…obviously.

Tasks (file bf.scala)

(2a) Brainf*** memory is represented by a Map from integers to integers. The
empty memory is represented by Map(), that is nothing is stored in the
memory. Map(0 -> 1, 2 -> 3) clearly has stored 1 at memory location
0, at 2 it stores 3. The convention is that if we query the memory at a
location that is not defined in the Mapwe return 0. Write a function, sread,
that takes a memory (a Map) and a memory pointer (an Int) as argument,

1https://en.wikipedia.org/wiki/Scala_(programming_language)#Companies

6

https://en.wikipedia.org/wiki/Scala_(programming_language)#Companies

and safely reads the corresponding memory location. If the map is not
defined at the memory pointer it returns 0.
Write another function write, which takes a memory, a memory pointer
and a integer value as argument and updates the map with the value at
the given memory location. As usual the map is not updated ‘in-place’
but a newmap is created with the same data, except the value is stored at
the given memory pointer. [1 Mark]

(2b) Write two functions, jumpRight and jumpLeft that are needed to imple-
ment the loop constructs of brainf***. They take a program (a String) and
a program counter (an Int) as argument andmove right (respectively left)
in the string in order to find the matching opening/closing bracket. For
example, given the following program with the program counter indi-
cated by an arrow:

--[.
↑
.+>--],>,++

then the matching closing bracket is in 9th position (counting from 0) and
jumpRight is supposed to return the position just after this

--[..+>--],
↑
>,++

meaning it jumps after the loop. Similarly, if you in 8th position then
jumpLeft is supposed to jump to just after the opening bracket (that is
jumping to the beginning of the loop):

--[..+>--
↑
],>,++

jumpLeft−→ --[.
↑
.+>--],>,++

Unfortunately we have to take into account that there might be another
opening and closing bracket on the ‘way’ to find the matching bracket.
For example in the brainf*** program

--[.
↑
.[+>]--],>,++

we do not want to return the index for the '-' in the 9th position, but the
program counter for ',' in 12th position. The easiest to find out whether
a bracket is matched is to use levels (which are the third argument in
jumpLeft and jumpLeft). In case of jumpRight you increase the level by
onewhenever you find an opening bracket and decrease by one for a clos-
ing bracket. Then in jumpRight you are looking for the closing bracket
on level 0. For jumpLeft you do the opposite. In this way you can find
matching brackets in strings such as

7

--[.
↑
.[[-]+>[.]]--],>,++

for which jumpRight should produce the position:

--[..[[-]+>[.]]--],
↑
>,++

It is also possible that the position returned by jumpRight or jumpLeft
is outside the string in cases where there are no matching brackets. For
example

--[.
↑
.[[-]+>[.]]--,>,++

jumpRight−→ --[..[[-]+>[.]]-->,++
↑

[1 Mark]

(2c) Write a recursive function run that executes a brainf*** program. It takes
a program, a program counter, a memory counter and amemory as argu-
ments. If the program counter is outside the program string, the execu-
tion stops and run returns the memory. If the program counter is inside
the string, it reads the corresponding character and updates the program
counter pc, memory pointer mp and memory mem according to the rules
shown in Figure 1. It the calls recursively runwith the updated data.
Write another function start that calls run with a given brainfu** pro-
gram and memory, and the program counter and memory counter set
to 0. Like run it returns the memory after the execution of the program
finishes. You can test your brainf**k interpreter with the Sierpinski trian-
gle or the Hello world programs or have a look at

https://esolangs.org/wiki/Brainfuck

[2 Marks]

8

https://esolangs.org/wiki/Brainfuck

'>' • pc+ 1
• mp+ 1
• mem unchanged

'<' • pc+ 1
• mp− 1
• mem unchanged

'+' • pc+ 1
• mp unchanged
• mem updated with mp -> mem(mp) + 1

'-' • pc+ 1
• mp unchanged
• mem updated with mp -> mem(mp) - 1

'.' • pc+ 1
• mp and mem unchanged
• print outmem(mp) as a character

',' • pc+ 1
• mp unchanged
• mem updated with mp -> input
input given by Console.in.read().toByte

'[' if mem(mp) == 0 then
• pc = jumpRight(prog, pc + 1, 0)
• mp and mem unchanged

otherwise if mem(mp) != 0 then
• pc+ 1
• mp and mem unchanged

']' if mem(mp) != 0 then
• pc = jumpLeft(prog, pc - 1 1, 0)
• mp and mem unchanged

otherwise if mem(mp) == 0 then
• pc+ 1
• mp and mem unchanged

any
other
char

• pc+ 1
• mp and mem unchanged

Figure 1: The rules for how commands in the brainf*** language update the
program counter, memory counter and memory.

9

