
Replacement Coursework 2 (Automata)
This coursework is worth 10%. It is about deterministic and non-deterministic
finite automata. The coursework is due on ??? March at 5pm. Make sure the
files you submit can be processed by just calling scala <<filename.scala>>.

Important: Do not use any mutable data structures in your submission! They
are not needed. This means you cannot use ListBuffers, for example. Do not
use return in your code! It has a different meaning in Scala, than in Java. Do
not use var! This declares a mutable variable. Make sure the functions you
submit are defined on the “top-level” of Scala, not inside a class or object. Also
note that the running time will be restricted to a maximum of 360 seconds on
my laptop.

Disclaimer
It should be understood that the work you submit represents your own effort!
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Part 1 (Deterministic Finite Automata)
There are many uses for Deterministic Finite Automata (DFAs), for example
testing whether a string should be accepted or not. The main idea is that DFAs
consist of some states (circles) and transitions (edges) between states. For ex-
ample consider the DFA

Q0start Q1 Q2

a

b

b

a
a

b

where there are three states (Q0, Q1 and Q2). The DFA has a starting state (Q0)
and an accepting state (Q2), the laĴer indicated by double lines. In general, a
DFA can have any number of accepting states, but only a single starting state
(in this example only a and b).

Transitions are edges between states labelled with a character. The idea is
that if I am in state Q0, say, and get an a, I can go to state Q1. If I am in state Q2
and get an a, I can stay in state Q2; if I get a b in Q2, then I have to go to state Q0.
The main point of DFAs is that if I am in a state and get a character, it is always
clear which is the next state—there can only be at most one. The task of Part 1
is to implement such DFAs in Scala using partial functions for the transitions.

1



Tasks

(1) Write a polymorphic function, called share, that decides whether two
sets share some elements (i.e. the intersection is not empty). [1 Mark]

(2) The transitions of DFAs are given by partial functions, with the type of
(state, character)-pair to state. For example the transitions of the DFA
given above can be defined as

val dfa_trans : PartialFunction[(State,Char), State] =
{ case (Q0, 'a') => Q1

case (Q0, 'b') => Q0
case (Q1, 'a') => Q2
case (Q1, 'b') => Q0
case (Q2, 'a') => Q2
case (Q2, 'b') => Q0

}

The main idea of partial functions (as opposed to functions) is that they
do not have to be defined everywhere. For example the transitions above
only mention characters a and b, but leave out any other characters. Par-
tial functions come with a method isDefinedAt that can be used to check
whether an input produces a result or not. For example

dfa_trans.isDefinedAt((Q0, 'a'))
dfa_trans.isDefinedAt((Q0, 'c'))

gives true in the first case and false in the second.
Write a function that takes transition and a (state, character)-pair as ar-
guments and produces an optional state (the state specified by the partial
transition function whenever it is defined; if the transition function is un-
defined, return None). [1 Mark]

(3) Write a function that “lifts” the function in (2) from characters to strings.
That is, write a function that takes a transition, a state and a list of char-
acters as arguments and produces the state generated by following the
transitions for each character in the list. For example you are in state Q0
in the DFA above and have the list List(a,a,a,b,b,a), then you need to
generate the state Q1 (as option since there might not be such a state).

[1 Mark]

(4) DFAs are defined as a triple: (staring state, transitions, final states). Write
a function accepts that tests whether a string is accepted by an DFA or
not. For this start in the starting state of the DFA, use the function under
(3) to calculate the state after following all transitions according to the
characters in the string. If the state is a final state, return true; otherwise

2



false.
[1 Mark]

Part 2 (Non-Deterministic Finite Automata)
The main point of DFAs is that for every given state and character there is at
most one next state (one if the transition is defined; none otherwise). However,
this restriction to at most one state can be quite limiting for some applications.1
Non-Deterministic Automata (NFAs) remove this restriction: there can bemore
than one starting state, and given a state and a character there can bemore than
one next state. Consider for example

R1start

R2start

R3
b

a

c a

where in state R2 if you get an a, you can go to state R1 or R3. If we want to find
out whether a NFA accepts a string, then we need to explore both possibilities.
We will do this “exploration” in the tasks below in a breath-first manner. The
possibility of having more than one next state in NFAs will be implemented by
having a set of partial transition functions. For example the NFA shown above
will be represented by the set of partial functions

val nfa_trans : NTrans = Set(
{ case (R1, 'c') => R2 },
{ case (R1, 'b') => R3 },
{ case (R2, 'a') => R1 },
{ case (R2, 'a') => R3 }

)

The point is that the 3rd element in this set states that in R2 and given an a, I
can go to state R1; and the 4th element, in R2, given an a, I can go to state R3.
When following transitions from a state, we have to look at all partial functions
in the set and generate the set of all possible next states.

Tasks

(5) Write a function nnextwhich takes a transition set, a state and a character
as arguments, and calculates all possible next states (returned as set).

[1 Mark]
1Though there is a curious fact that every NFA can be translated into an “equivalent” DFA, that

is accepting the same set of strings. However this might increase drastically the number of states
in the DFA.

3



(6) Write a function nnexts which takes a transition set, a set of states and a
character as arguments, and calculates all possible next states that can be
reached from any state in the set.

[1 Mark]

(7) Like in (3), write a function nnextss that lifts nnexts from (6) from single
characters to lists of characters. [1 Mark]

(8) NFAs are also defined as a triple: (set of staring states, set of transitions,
final states). Write a function naccepts that tests whether a string is ac-
cepted by a NFA or not. For this start in all starting states of the NFA,
use the function under (7) to calculate the set of states following all tran-
sitions according to the characters in the string. If the set of states shares
and state with the set of final states, return true; otherwise false. Use the
function under (1) in order to test whether these two sets of states share
any states [1 Mark]

(9) Since we explore in functions under (6) and (7) all possible next states,
we decide whether a string is accepted in a breath-first manner. (Depth-
first would be to choose one state, follow all next states of this single state;
checkwhether it leads to a accepting state. If not, we backtrack and choose
another state). The disadvantage of breath-first search is that at every
step a non-empty set of states are “active”…that need to be followed at
the same time. Write similar functions as in (7) and (8), but instead of
returning states or a boolean, these functions return the number of states
that need to be followed in each step. The function max_accept should
return the maximum of all these numbers.
Consider again the NFA shown above. At the beginning the number of
active states will be 2 (since there are two starting states, namely R1 and
R2). If we get an a, there will be still 2 active states, namely R1 and R3 both
reachable from R2. There is no transition for a and R1. So for a string, say,
ab which is accepted by the NFA, the maximum number of active states
is 2 (it is not possible that all states are active with this NFA; is it possible
that no state is active?). [2 Marks]

4


