Email:
Slides & Code:

Office Hour:
Location:

Pollev:

PEP Scala (1)

christian.urban at kcl.ac.uk
KEATS

Fridays 13:00 — 14:00
N7.07 (North Wing, Bush House)

https://pollev.com/cfltutoratki576



Why Scala?
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A former student working now at Quantexa:

“l am a former student. | graduated last year. | got my dream job as a backend Scala
developer. Most of the Scala | know is from PEP 2018/19. My interviewers said they
expect code of a lesser quality even from people with one year of experience.”



lichess.org

“I am currently working as a software engineer at Morgan Stanley
whilst doing my year-in-industry and am using Scala in the workplace.
My team were impressed that | could already program in the language
and even had knowledge of other functional languages. They told me
that most university students are not taught such languages.”

— Sumaiya Mohbubul 2021/22

“PEP was my favourite module so far during these 2 years. It motivated
me to apply and get a summer internship offer at S&P Global as a Scala
developer. The module content was more than enough for me to start
working on the projects here at the company.”

— Szabolcs Nagy 2021/22




Why Scala?

compiles to the JVM
(also JavaScript, native X86 in the works)

integrates seamlessly with Java

combines functional and object-oriented
programming

no pointers, no null
often one can write very concise and elegant code



Java vs Scala

public class Point { Java

1
private final int x, y; 2
3

public Point(int x, int y) { 4
this.x = x; 5
this.y = y; 6
7

8

9

<

}

public int x() { return x; }

public int y() { return y; } "
} 12

case class Point(x: Int, y: Int) Scala



First Steps: Scala 3 Tools

e contains a REPL = but this year we use scala-cli
e |use VS Codium and a Scala extension (M'place)

e thereis also a plugin for Intelli), but | do not recommend
it



My personal keboard shortcut for VS Code
(in keybindings.json)

“key”: ”ctrl+enter?”,
”command”: ”workbench.action.terminal.runSelectedText”,
”when”: ”editorTextFocus && editorHasSelection”



This year Scala3/ scala-cli

scala-cli = https://scala-cli.virtuslab.org/

Installation problem:s:
e Oscar Sjostedt (oscar.sjostedt@kcl.ac.uk)
e Nicole Lehchevska (nicole.lehchevska@kcl.ac.uk)

Github problems:
e Quan Tran (anh.tran@kcl.ac.uk)

Discussion forum:
e Ruben Ticehurst-James (ruben.ticehurst-james@kcl.ac.uk)


https://scala-cli.virtuslab.org/
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Why Scala?
Money?

What Languages Are Associated with the Highest Salaries Worldwide?
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* source: Stackoverflow Developer Survey, 2019
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Elm, Rust, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)...
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Elm, Rust, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)...
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Why Functional
Programming?

Elm, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)...



Why Functional
Programming?

“If you want to see which features will be in mainstream
programming languages tomorrow, then take a look at
functional programming languages today.”

—Simon Peyton Jones (works at Epic Games, used to work at Microsoft)
main developer of the Glasgow Haskell Compiler

Elm, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)...



Why Functional
Programming?

Immutability
Elm, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)...



Functions Procedures

TNPUT INPUT

| V cHesky
L i \7—-—- ARBITRPRY
J,‘—

J(l—

OVTPUT OVTPUT

* from “What pure functional programming is all about?”
p prog 8



Why bother? or
What is wrong with this?
for (int i = 10; i < 20; i++) {

//...Do something interesting
// with i...



1986

64K RAM, no HD, no monitor, lots of cables
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1992, Linux

1986

1986: no Internet
no Amazon
no FB, no mobiles,...




1988, C 1992, Linux
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Speedup by Moore’s Law

1986: 3days 1996: 135 mins
1988: 1.5days 1998: 67 mins
1990: 18 hs 2000: 33 mins
1992: 9hs 2002: 16 mins
1994: 4.5 hs m

Every two years, computers got twice as powerful.
Nno AmMazon

no FB, no mobiles,...

2017




1992, Linux

1986

1986: no Internet
no Amazon
no FB, no mobiles,...
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Seq vs Par

CPU LOAD CPU LOAD

N = ,&/La

In FP: Once a variable is created, it is assigned a value and then never
changed again = no synchronisation needed



Types
e Base types
Int, Long, BigInt, Float, Double

String, Char
Boolean

e Compound types
List[Int] lists of Int’s
Set[Double] sets of Double’s
(Int, String) Int-String pair
List[(BigInt, String)] lists of BigInt-String

pairs

List[List[Int]] list of lists of Int’s

Option[Int] options of Int’s



def fname(argl: tyl, arg2: ty2,..., argn: tyn): rty = {



def average(xs: List[Int]) : Int = {
val s = xs.sum
val n = xs.length
s / n

}



The Joy of Immutability

e If you need to manipulate some data in a list say,
then you make a new list with the updated values,
rather than revise the original list. Easy!

val old list List(1, 2, 3, 5)
val new list = 0 :: old list
// -> List(e, 1, 2, 3, 4, 5)

e You do not have to be defensive about who can
access the data.

e You can look at your code in isolation.



Email: Hate 'val’

rSubject: Hate 'val’ 01:00 AM
Hello Mr Urban,

| just wanted to ask, how are we suppose to work with
the completely useless val, that can’t be changed ever?
Why is this rule active at all? I've spent 4 hours not
thinking on the coursework, but how to bypass this
annoying rule. What's the whole point of all these
coursework, when we can't use everything Scala gives
us?!?

Regards.
«deleted »




rSubject: Re: Hate 'val’ 01:02 AM

«my usual rant about fp...
concurrency bla bla... better programs yada »

PS: What are you trying to do where you desperately
| want to use var?




rSubject: Re: Re: Hate 'val’ 01:04 AM

Right now my is_legal function works fine:

def is_legal(dim: Int, path: Path)(x: Pos): Boolean = {
var boolReturn = false
if(x._1 > dim || x._2 > dim || x._1 <@ || x._2 < 0) {
else { var breakLoop = false
if(path == Nil) { boolReturn = true }
else { for(i <- © until path.length) {
if(breakLoop == false) {
if(path(i) == x) {
boolReturn = true
breakLoop = true

}
else { boolRetur — -
} else breakLoop | --butlcan’t make it work with
} boolReturn being val. What approach
} would you recommend in this case,
boolReturn and is using var in this case justified?

} |
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Right now my is_legal function works fine:

def is_legal(dim: Int, path: Path)(x: Pos): Boolean = {
var boolReturn = false
if(x._1 > dim || x._2 > dim || x._1 <@ || x._2 < 0) {
else { var breakLoop = false
if(path == Nil) { boolReturn = true }
else { for(i <- © until path.length) {
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if(path(i) == x) {
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else { boolRetur Lol -
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Me: boolReturn being val. What approach
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Subject: Re: Re: Re: Hate 'val’ 01:06 AM |

OK. So you want to make sure that the x-position is not outside the
board...and furthermore you want to make sure that the x-position is
not yet in the path list. How about something like

def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
...<<some board conditions>>... && !path.contains(x)

q Does not even contain a val.

(This is all on one line)



7

"

Subject: Re: Re: Re: Re: Hate 'val’ 11:02 AM |

THANK YOU! You made me change my coding
perspective. Because of you, | figured out the next
one...




rSubject: Re: Re: Re: Re: Hate 'val’ 11:02 AM |

THANK YOU! You made me change my coding
perspective. Because of you, | figured out the next
one...

" J

Me:




("PEP was my favourite module so far during these 2 )
years. It motivated me to apply and get a summer
internship offer at S&P Global as a Scala developer. The
module content was more than enough for me to start
working on the projects here at the company.”

— Szabolcs Daniel Nagi (PEP 2021)




Conclusion for Today

This year we will be using Scala 3 with the
scala-cli REPL!

https://scala-cli.virtuslab.org/

Scala can be a rather deep language...i.e. gives you a
lot of rope to shoot yourself.

Learning functional programming is not
easy...when you have spent all of your career
thinking in an imperative way, it is hard to change.

Hope you have fun with Scala and the assignments.


https://scala-cli.virtuslab.org/
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