Email:
Slides & Code:

Office Hour:
Location:

Pollev:

PEP Scala (1)

christian.urban at kcl.ac.uk
KEATS

Fridays 13:00 — 14:00
N7.07 (North Wing, Bush House)

https://pollev.com/cfltutoratki576



Why Scala?

Linked [ <%

' DF
guardian eDF ’
Morgan Stanley OVe
OUI'S ucre ‘
CREDIT SU|SSE\ < lichess engine (open source)
Standard & Poor’s HSBC <» lichess.org

A former student working now at Quantexa:

“l am a former student. | graduated last year. | got my dream job as a backend Scala
developer. Most of the Scala | know is from PEP 2018/19. My interviewers said they
expect code of a lesser quality even from people with one year of experience.”



lichess.org

“I am currently working as a software engineer at Morgan Stanley
whilst doing my year-in-industry and am using Scala in the workplace.
My team were impressed that | could already program in the language
and even had knowledge of other functional languages. They told me
that most university students are not taught such languages.”

— Sumaiya Mohbubul 2021/22

“PEP was my favourite module so far during these 2 years. It motivated
me to apply and get a summer internship offer at S&P Global as a Scala
developer. The module content was more than enough for me to start
working on the projects here at the company.”

— Szabolcs Nagy 2021/22




Why Scala?

compiles to the JVM
(also JavaScript, native X86 in the works)

integrates seamlessly with Java

combines functional and object-oriented
programming

no pointers, no null
often one can write very concise and elegant code



Java vs Scala

public class Point { Java

1
private final int x, y; 2
3

public Point(int x, int y) { 4
this.x = x; 5
this.y = y; 6
7

8

9

<

}

public int x() { return x; }

public int y() { return y; } "
} 12

case class Point(x: Int, y: Int) Scala



First Steps: Scala 3 Tools

e contains a REPL = but this year we use scala-cli
e |use VS Codium and a Scala extension (M'place)

e thereis also a plugin for Intelli), but | do not recommend
it



My personal keboard shortcut for VS Code
(in keybindings.json)

“key”: ”ctrl+enter?”,
”command”: ”workbench.action.terminal.runSelectedText”,
”when”: ”editorTextFocus && editorHasSelection”



This year Scala3/ scala-cli

scala-cli = https://scala-cli.virtuslab.org/

Installation problem:s:
e Oscar Sjostedt (oscar.sjostedt@kcl.ac.uk)
e Nicole Lehchevska (nicole.lehchevska@kcl.ac.uk)

Github problems:
e Quan Tran (anh.tran@kcl.ac.uk)

Discussion forum:
e Ruben Ticehurst-James (ruben.ticehurst-james@kcl.ac.uk)


https://scala-cli.virtuslab.org/

Why Scala?

PEP (Scala) 01, King's College London - p. 9/28



Why Scala?
Money?

What Languages Are Associated with the Highest Salaries Worldwide?

Global  United States

Scala
e

Ruby
WebAssembly
Rust

Erlang

H

80K
s78k
$76k
75K
73k
$72%

$71k

R
Python
Objective-C
Typescript
o

Swit

Kotin

69K
soak
63K
s62k
60K
$59K
559
57k

* source: Stackoverflow Developer Survey, 2019

What Languages Are Associated with the Highest Salaries

Global

United States

Scala $143K
Clojure $130k

Go $136k I—
st3sk
St32k

Erlang
Objective-C
WebAssembly
Kottin

Rust

3

Eiir

Ruby

c

oo

$130k —
st25c
St25k
st24c
s1z3 —
St21k
‘$120k ]
$120x I
$120« I

Java

Python

118k
stisk E—
Stiok I

Elm, Rust, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)...

PEP (Scala) 0

1, King’s College London - p. 9/28



Why Scala?

Money?

What Languages Are Associated with the Highest Salaries Worldwide? What Languages Are Associated with the Highest Salaries Worldwide?

Global  United States Giobal  United States

Scala $143k

Clojure $90k
Clojure $130k

F# ssok

Go soo  —

Scla S0k

Eldr 76k I—

Ruby $75 I— $95,526
Wobssomoly 73k

Rust $72k $38000

Eiang 71k I—

BastShollPowerShell S69k  — $92,959
R seak I

Pyon 63— searee

Objectve-C S62k  EE—

TypeScript S60k  EEE— . $89,204
o ssox IE—

Swit ssox  EE— et

Kotin  $57 I

Clojure. $106,644

$103,000

$93,000

$90,073

$86,948

* source: Stackoverflow Developer Survey, 2019

Elm, Rust, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)...



Why Scala?
Money?

What Languages Are Associated with the Highest Salaries Worldwide?

What Languages Are Associated with the Highest Salaries Worldwide?
Giobal  United States

Global  United States.
Scala $143k [

Clojure  $90k

-{Functional =

OjectiveC
Types ——
of sso ISR 0 BaswShelPowerShel stiox I
Swit ssox  IE— ava st1a
Ktin $57%  — Pyivon $116k I

* source: Stackoverflow Developer Survey, 2019

Elm, Rust, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)...



Why Functional
Programming?

Elm, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)...



Why Functional
Programming?

“If you want to see which features will be in mainstream
programming languages tomorrow, then take a look at
functional programming languages today.”

—Simon Peyton Jones (works at Epic Games, used to work at Microsoft)
main developer of the Glasgow Haskell Compiler

Elm, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)...



Why Functional
Programming?

Immutability
Elm, Haskell, Ocaml, F#, Erlang, ML, Lisp (Racket)...



Functions Procedures

TNPUT INPUT

| V cHesky
L i \7—-—- ARBITRPRY
J,‘—

J(l—

OVTPUT OVTPUT

* from “What pure functional programming is all about?”
p prog 8



Why bother? or
What is wrong with this?
for (int i = 10; i < 20; i++) {

//...Do something interesting
// with i...



1986

64K RAM, no HD, no monitor, lots of cables



1986 1988,C




1988, C 1992, Linux




1988, C 1992, Linux

1996



1988, C 1992, Linux




1992, Linux

20127

1996



1992, Linux

20127

1996




1992, Linux

1986

1986: no Internet
no Amazon
no FB, no mobiles,...




1988, C 1992, Linux

[ 1IN

Speedup by Moore’s Law

1986: 3days 1996: 135 mins
1988: 1.5days 1998: 67 mins
1990: 18 hs 2000: 33 mins
1992: 9hs 2002: 16 mins
1994: 4.5 hs m

Every two years, computers got twice as powerful.
Nno AmMazon

no FB, no mobiles,...

2017




1992, Linux

1986

1986: no Internet
no Amazon
no FB, no mobiles,...




Seq vs Par




Seq vs Par




Seq vs Par

CPU LOAD CPU LOAD

N = ,&/La

In FP: Once a variable is created, it is assigned a value and then never
changed again = no synchronisation needed



Types
e Base types
Int, Long, BigInt, Float, Double

String, Char
Boolean

e Compound types
List[Int] lists of Int’s
Set[Double] sets of Double’s
(Int, String) Int-String pair
List[(BigInt, String)] lists of BigInt-String

pairs

List[List[Int]] list of lists of Int’s

Option[Int] options of Int’s



def fname(argl: tyl, arg2: ty2,..., argn: tyn): rty = {



def average(xs: List[Int]) : Int = {
val s = xs.sum
val n = xs.length
s / n

}



The Joy of Immutability

e If you need to manipulate some data in a list say,
then you make a new list with the updated values,
rather than revise the original list. Easy!

val old list List(1, 2, 3, 5)
val new list = 0 :: old list
// -> List(e, 1, 2, 3, 4, 5)

e You do not have to be defensive about who can
access the data.

e You can look at your code in isolation.



Email: Hate 'val’

rSubject: Hate 'val’ 01:00 AM
Hello Mr Urban,

| just wanted to ask, how are we suppose to work with
the completely useless val, that can’t be changed ever?
Why is this rule active at all? I've spent 4 hours not
thinking on the coursework, but how to bypass this
annoying rule. What's the whole point of all these
coursework, when we can't use everything Scala gives
us?!?

Regards.
«deleted »




rSubject: Re: Hate 'val’ 01:02 AM

«my usual rant about fp...
concurrency bla bla... better programs yada »

PS: What are you trying to do where you desperately
| want to use var?




rSubject: Re: Re: Hate 'val’ 01:04 AM

Right now my is_legal function works fine:

def is_legal(dim: Int, path: Path)(x: Pos): Boolean = {
var boolReturn = false
if(x._1 > dim || x._2 > dim || x._1 <@ || x._2 < 0) {
else { var breakLoop = false
if(path == Nil) { boolReturn = true }
else { for(i <- © until path.length) {
if(breakLoop == false) {
if(path(i) == x) {
boolReturn = true
breakLoop = true

}
else { boolRetur — -
} else breakLoop | --butlcan’t make it work with
} boolReturn being val. What approach
} would you recommend in this case,
boolReturn and is using var in this case justified?

} |



rSubject: Re: Re: Hate 'val’ 01:04 AM

Right now my is_legal function works fine:

def is_legal(dim: Int, path: Path)(x: Pos): Boolean = {
var boolReturn = false
if(x._1 > dim || x._2 > dim || x._1 <@ || x._2 < 0) {
else { var breakLoop = false
if(path == Nil) { boolReturn = true }
else { for(i <- © until path.length) {
if(breakLoop == false) {
if(path(i) == x) {
boolReturn = true
breakLoop = true

}
else { boolRetur Lol -
} else breakLoop | --butlcan’t make it work with
Me: boolReturn being val. What approach

would you recommend in this case,

urn and is using var in this case justified?




Subject: Re: Re: Re: Hate 'val’ 01:06 AM |

OK. So you want to make sure that the x-position is not outside the
board...and furthermore you want to make sure that the x-position is
not yet in the path list. How about something like

def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
...<<some board conditions>>... && !path.contains(x)

q Does not even contain a val.

(This is all on one line)



7

"

Subject: Re: Re: Re: Re: Hate 'val’ 11:02 AM |

THANK YOU! You made me change my coding
perspective. Because of you, | figured out the next
one...




rSubject: Re: Re: Re: Re: Hate 'val’ 11:02 AM |

THANK YOU! You made me change my coding
perspective. Because of you, | figured out the next
one...

" J

Me:




("PEP was my favourite module so far during these 2 )
years. It motivated me to apply and get a summer
internship offer at S&P Global as a Scala developer. The
module content was more than enough for me to start
working on the projects here at the company.”

— Szabolcs Daniel Nagi (PEP 2021)




Conclusion for Today

This year we will be using Scala 3 with the
scala-cli REPL!

https://scala-cli.virtuslab.org/

Scala can be a rather deep language...i.e. gives you a
lot of rope to shoot yourself.

Learning functional programming is not
easy...when you have spent all of your career
thinking in an imperative way, it is hard to change.

Hope you have fun with Scala and the assignments.


https://scala-cli.virtuslab.org/

TINPUT

L

OVTPUT




PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



PEP (Scala) 01, King's College London — p. 27/28



e
e
e

TR

a

PwY

A

Chart Title

a0z TAON b
TZ02 IND 800702 TT AON ndL
TZ02 IND 80:07'80 TT AON nuL
T20Z LN9 90:02/0Z T AON POM.
TZ0Z L9 90:02'80 0T AON POM.
TZ0Z LIND SO0Z:0Z60 AN anL.
TZ0Z LIND 90:07:8060 AN anL
T20Z LD 90:02:0Z 80 AON UOW
T20Z LD 90°02'80 80 AON UOW
TZ0Z LIND 90:07:07 L0 AN uns
TZ0Z LIND 90:07:80 L0 AN Uns
1207 LD 90:02:02 90 AN 325
1207 LD 90028090 AON 325
1207 LN9 90:02:02 S0 AON 13
T2Z LND 90:00'80 50 AON 114
TZ0T IND 900702 10 FON nUL
TZ0T IND 90:07:80 10 FON n4L
T20Z LWD 80°02:0Z £0 AON POM.
T20Z LWD 80°02'80 £0 AON POM.
TZ0Z LIND 60:07:07 20 AN 3nL.
TZ0Z LN 80:07:8020 AN anL.
T20Z LN 80:02:0Z T0 AON YOI
T20Z LN9 90:02'80 T0 AON WO
TZ0Z LIND 900707 TE DO Uns.
1202 LN 90:0780 T DO Uns.
1207 158 900712 0€ 120 %5
207 158 900260 0€ 120 %5
T207 18 900212 62120 U3
1207 18 900260 62 120 U3
T202 158 90:07:1 82390 ML
TZ02 158 90:07:60 82390 ML
202 1S890:02TZ L2190 PoM.
207 158900260 L2 190 PoM.
207 158 90°0Z1Z 97 PO anL
T207 158 £0°0Z:60 97 PO 311
1207 15 80212 52 120 LW
202 158900260 52 120 LW
1207 158 90°0ZTZ v PO uns
1207 158 90°0Z:60 v PO uns
1207 158 L0°0ZTZE2190 %S
1207158 00760 €2 120 165
T207 188 90021222 190 U3
T207 158 90026022 120 U3
T20¢ 158 90:0Z°T2 12190 Nl
202 158 90:02:60 12190 ML
1202 158930212 02 120 PoM.
T207 158.90:026002 120 PO
1202158 007 12 61 PO anL
1202158 00760 61 PO anL
1207 158 90:021Z81 120 LW
1207 158 90:02 6081 120 LW
T2 158 900212 L1 PO uns

1207 158 9001291 120 %5
1207 158 90026091 120 %5
1207 158 S0:0T2 ST 10 U3
1202158 90:02605T 0 3
1202 158 90:0ZTZ 1390 ML
TZ02 158 90:0Z:60 1190 ML
202 1S8S0TTZET 120 POM.
TZ0Z 1S8SG0T60ET 190 PoM.
1207 158 90012 21 PO anL
1207 158 900260 21 PO anL
202 1S890:012 11120 LW
202 158900260 11120 LW
1207 158 90:0ZTZ 0T PO uns
1207158 0:07:60 0T PO uns
122 158 90021260190 %5
202 158 90026060 120 5
127 158 90:021280 190 U3
1207 158 90:02:6080 120 U3
TZ02 158 90:0Z°T £0390 ML
TZ02 158 90:02:60 £0190 ML
1207 15890:021290 20 PO
TZ07 15890:026090 20 PO
1207158 00712 50 PO anL
207 158 80°0Z:60 S0 PO 9L
202 158 8:02712 70 120 LW
202 158900260 70 120 LW
1207 158 900212 £0 PO uns
1207 158 900760 £0 PO uns
1207 158 90021220120 %5
207 158 90026020190 %5
207 LS8 SO0TTZT00 U3
207 158 L0060 100 U3
207 158 900Z T2 0E ¢oS nuL
207 158 900Z:60 0 ¢aS nuL
207 158 90°02:12 62 da5 Pom.
1207 159000772 87 625 an.
1202 158 90:00:27 £2 d35 LW

&0
s0
™
30
20
100

207 156 TT:00°T097 das ung



