
Coursework 8 (Scala, Regular Expressions
This coursework is worth 10% and is due on XXXX at 16:00. You are asked to
implement a regular expression matcher.

Make sure the files you submit can be processed by just calling scala <<filename.scala>>.

Important: Do not use any mutable data structures in your submissions! They
are not needed. This excluded the use of ListBuffers, for example. Do not use
return in your code! It has a different meaning in Scala, than in Java. Do not
use var! This declares a mutable variable. Feel free to copy any code you need
from files knight1.scala, knight2.scala and knight3.scala. Make sure the
functions you submit are defined on the “top-level” of Scala, not inside a class
or object.

Disclaimer
It should be understood that the work you submit represents your own effort.
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

Task

The task is to implement a regular expression matcher based on derivatives of
regular expressions. The implementation should be able to deal with the usual
(basic) regular expressions

r ::= 0 cannot match anything
| 1 can only match the empty string
| c can match a character c
| r1 + r2 can match either with r1 or with r2
| r1 · r2 can match first with r1 and then with r2
| r∗ can match zero or more times r
| r{↑n} can match zero upto n times r
| r{n} can match exactly n times r

Implement a function called nullable by recursion over regular expressions:

1

nullable(0) def
= false

nullable(1) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

nullable(r{↑n})
def
= true

nullable(r{n})
def
= if n = 0 then true else nullable(r)

der c (0) def
= 0

der c (1) def
= 0

der c (d) def
= if c = d then 1 else 0

der c (r1 + r2)
def
= (der c r1) + (der c r2)

der c (r1 · r2)
def
= if nullable(r1)

then ((der c r1) · r2) + (der c r2)
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

der c (r{↑n})
def
= if n = 0 then 0 else (der c r) · (r{↑n−1})

der c (r{n})
def
= if n = 0 then 0 else

if nullable(r) then (der c r) · (r{↑n−1})
else (der c r) · (r{n−1})

Be careful that your implementation of nullable and der c satisfies for every
r the following two properties (see also Question 2):

• nullable(r) if and only if [] ∈ L(r)

• L(der c r) = Der c (L(r))

Important! Your implementation should have explicit cases for the basic reg-
ular expressions, but also explicit cases for the extended regular expressions.
That means do not treat the extended regular expressions by just translating
them into the basic ones. See also Question 2, where you are asked to explicitly
give the rules for nullable and der c for the extended regular expressions.

Question 1
What is your King’s email address (you will need it in Question 3)?

Question 2
This question does not require any implementation. From the lectures you have
seen the definitions for the functions nullable and der c for the basic regular

2

expressions. Give the rules for the extended regular expressions:

nullable([c1c2 . . . cn])
def
= ?

nullable(r+) def
= ?

nullable(r?)
def
= ?

nullable(r{n,m})
def
= ?

nullable(∼ r) def
= ?

der c ([c1c2 . . . cn])
def
= ?

der c (r+) def
= ?

der c (r?)
def
= ?

der c (r{n,m})
def
= ?

der c (∼ r) def
= ?

Remember your definitions have to satisfy the two properties

• nullable(r) if and only if [] ∈ L(r)

• L(der c r)) = Der c (L(r))

Question 3
Implement the following regular expression for email addresses

([a-z0-9__ .−]+) · @ · ([a-z0-9 .−]+) · . · ([a-z .]{2,6})

and calculate the derivative according to your email address. When calculating
the derivative, simplify all regular expressions as much as possible by applying
the following 7 simplification rules:

r · 0 7→ 0
0 · r 7→ 0
r · 1 7→ r
1 · r 7→ r
r + 0 7→ r
0+ r 7→ r
r + r 7→ r

Write down your simplified derivative in a readable notation using parentheses
where necessary. That means you should use the infix notation +, ·, ∗ and so
on, instead of code.

3

Question 4
Suppose [a-z] stands for the range regular expression [a, b, c, . . . , z]. Consider
the regular expression / · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · / and decide wether
the following four strings are matched by this regular expression. Answer yes
or no.

1. "/**/"

2. "/*foobar*/"

3. "/*test*/test*/"

4. "/*test/*test*/"

Also test your regular expression matcher with the regular expression a{3,5}

and the strings

5. aa

6. aaa

7. aaaaa

8. aaaaaa

Does your matcher produce the expected results?

Question 5
Let r1 be the regular expression a · a · a and r2 be (a{19,19}) · (a?). Decidewhether
the following three strings consisting of as only can be matched by (r+1)+. Sim-
ilarly test them with (r+2)+. Again answer in all six cases with yes or no.

These are strings are meant to be entirely made up of as. Be careful when copy-
and-pasting the strings so as to not forgeĴing any a and to not introducing any
other character.

1. "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aa
aaa"

2. "aaa
aaa
aaa"

3. "aaa
aaa
aa"

4

