
PEPScala (2)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides & Code: KEATS
Office Hours: Mondays 12:00 – 14:00

PEP (Scala) 02, King’s College London – p. 1/9

Scala on LabComputers

$ /usr/share/scala/bin/scala

Welcome to Scala 2.12.6 (Java HotSpot(TM) 64-Bit
Server VM, Java 10.0.1). Type in expressions for
evaluation. Or try :help.

scala>

PEP (Scala) 02, King’s College London – p. 2/9

Assignments
Don’t change anything with the templates!

Avoid at all costs:
var
return
ListBuffer
mutable
.par

“Scala — Slowly compiled academic language”
— a joke(?) found on Twitter

PEP (Scala) 02, King’s College London – p. 3/9

Assignments
Don’t change anything with the templates!

Avoid at all costs:
var
return
ListBuffer
mutable
.par

“Scala — Slowly compiled academic language”
— a joke(?) found on Twitter

PEP (Scala) 02, King’s College London – p. 3/9

Email: Hate ’val’
Subject: Hate ’val’ 01:00 AM
Hello Mr Urban,
I just wanted to ask, how are we suppose to work
with the completely useless val, that can’t be
changed ever? Why is this rule active at all? I’ve
spent 4 hours not thinking on the coursework,
but how to bypass this annoying rule. What’s the
whole point of all these coursework, when we
can’t use everything Scala gives us?!?
Regards.
«deleted»

PEP (Scala) 02, King’s College London – p. 4/9

Par: Intersections

PEP (Scala) 02, King’s College London – p. 5/9

A

A = {1, 2, 3, . . . , 1000}

B

B = {1, 5, 9, 13, . . . , 997}

A B

How many elements are in A ∩ B?

For-Comprehensions Again

for (n <- List(1, 2, 3, 4, 5)) yield n * n

List(1, 4, 9, 16, 25)n * n:

This is for when the for-comprehension
yields / produces a result.

PEP (Scala) 02, King’s College London – p. 6/9

For-Comprehensions Again

for (n <- List(1, 2, 3, 4, 5)) yield n * n

List(1, 4, 9, 16, 25)n * n:

This is for when the for-comprehension
yields / produces a result.

PEP (Scala) 02, King’s College London – p. 6/9

For-Comprehensions Again

for (n <- List(1, 2, 3, 4, 5)) yield n * n

List(1, 4, 9, 16, 25)n * n:

This is for when the for-comprehension
yields / produces a result.

PEP (Scala) 02, King’s College London – p. 6/9

For-Comprehensions Again

for (n <- List(1, 2, 3, 4, 5)) yield n * n

vs
for (n <- List(1, 2, 3, 4, 5)) println(n)

The second version is in case the for does not
produce any result.

PEP (Scala) 02, King’s College London – p. 7/9

WhyScala? No null!
You can avoid null:

PEP (Scala) 02, King’s College London – p. 8/9

“I call it my billion-dollar mistake. It was the invention of
the null reference in 1965. At that time, I was designing the
first comprehensive type system for references in an object
oriented language (ALGOLW). My goal was to ensure
that all use of references should be absolutely safe, with
checking performed automatically by the compiler. But I
couldn’t resist the temptation to put in a null reference,
simply because it was so easy to implement. This has led to
innumerable errors, vulnerabilities, and system crashes,
which have probably caused a billion dollars of pain and
damage in the last forty years.” Sir Tony (Hoare)

Questions?

My Office Hours: Mondays 12 – 14

PEP (Scala) 02, King’s College London – p. 9/9

