
Core Part 2 (Scala, 3 Marks)
“What one programmer can do in one month,

two programmers can do in two months.”
— Frederick P. Brooks (author of The Mythical Man‑Month)

Important

• Make sure the files you submit can be processed by just calling
scala‐cli <<filename.scala>> on the command line.1 Use the tem‑
plate files provided and do not make any changes to arguments of func‑
tions or to any types. You are free to implement any auxiliary function
you might need.

• Do not leave any test cases running in your code because this might
slow down your program! Comment out test cases before submission,
otherwise you might hit a time‑out.

• Do not use any mutable data structures in your submissions! They are
not needed. This means you cannot create new Arrays or ListBuffers,
for example.

• Do not use return in your code! It has a different meaning in Scala than
in Java. It changes the meaning of your program, and you should never
use it.

• Do not use var! This declares a mutable variable. Only use val!

• Do not use any parallel collections! No .par therefore! Our testing and
marking infrastructure is not set up for it.

Also note that the running time of each part will be restricted to a maximum of
30 seconds on my laptop.

Disclaimer

It should be understood that the work you submit represents your own effort!
You have implemented the code entirely on your own. You have not copied
from anyone else. Do not be tempted to ask Copilot for help or do any other
shenanigans like this! An exception is the Scala code I showed during the lec‑
tures or uploaded to KEATS, which you can freely use.

1All major OSes, including Windows, have a command line. So there is no good reason to not
download scala‑cli, install it and run it on your own computer. Just do it!

1



Reference Implementation
Like the C++ part, the Scala part works like this: you push your files to GitHub
and receive (after sometimes a long delay) some automated feedback. In the
end we will take a snapshot of the submitted files and apply an automated
marking script to them.

In addition, the Scala part comes with reference implementations in form of
jar‑files. This allows you to run any test cases on your own computer. For ex‑
ample you can call scala‑cli on the command linewith the option ‐‐extra‐jars
docdiff.jar and then query any function from the template file. Say youwant
to find out what the function occurrences produces: for this you just need to
prefix it with the object name C2. If you want to find out what these functions
produce for the list List("a", "b", "b"), you would type something like:

$ scala‐cli ‐‐extra‐jars docdiff.jar

scala> C2.occurrences(List("a", "b", "b"))
...

Hints
For the Core Part 2: useful operations involving regular expressions:

reg.findAllIn(s).toList

finds all substrings in s according to a regular regular expression reg; useful
list operations: .distinct removing duplicates from a list, .count counts the
number of elements in a list that satisfy some condition, .toMap transfers a list
of pairs into aMap, .sum adds up a list of integers, .max calculates themaximum
of a list.

2



Core Part 2 (3 Marks, file docdiff.scala)
It seems plagiarism—stealing and submitting someone else’s code—is a serious
problem at other universities.2 Detecting such plagiarism is time‑consuming
and disheartening for lecturers at those universities. To aid these poor souls,
let’s implement in this part a program that determines the similarity between
two documents (be they source code or texts in English). A document will be
represented as a list of strings.

Tasks
(1) Implement a function that ‘cleans’ a string by finding all (proper)words in

the string. For this use the regular expression \w+ for recognising words
and the library function findAllIn. The function should return a docu‑
ment (a list of strings). [0.5 Marks]

(2) In order to compute the overlap between two documents, we associate
each document with a Map. This Map represents the strings in a docu‑
ment and howmany times these strings occur in the document. A simple
(though slightly inefficient) method for counting the number of string‑
occurrences in a document is as follows: remove all duplicates from the
document; for each of these (unique) strings, count howmany times they
occur in the original document. Return a Map associating strings with
occurrences. For example

occurrences(List("a", "b", "b", "c", "d"))

produces Map(a ‐> 1, b ‐> 2, c ‐> 1, d ‐> 1) and

occurrences(List("d", "b", "d", "b", "d"))

produces Map(d ‐> 3, b ‐> 2). [1 Mark]

(3) You can think of the Maps calculated under (2) as memory‑efficient rep‑
resentations of sparse “vectors”. In this subtask you need to implement
the product of two such vectors, sometimes also called dot product of two
vectors.3

For this dot product, implement a function that takes two documents
(List[String]) as arguments. The function first calculates the (unique)
strings in both. For each string, it multiplies the corresponding occur‑
rences in each document. If a string does not occur in one of the docu‑
ments, then the product for this string is zero. At the end you need to

2Surely, King’s students, after all their instructions and warnings, would never commit such an
offence. Yes?

3https://en.wikipedia.org/wiki/Dot_product

3

https://en.wikipedia.org/wiki/Dot_product


add up all products. For the two documents in (2) the dot product is 7,
because

1 ∗ 0︸︷︷︸
”a”

+ 2 ∗ 2︸︷︷︸
”b”

+ 1 ∗ 0︸︷︷︸
”c”

+ 1 ∗ 3︸︷︷︸
”d”

= 7

[1 Mark]

(4) Implement first a function that calculates the overlap between two docu‑
ments, say d1 and d2, according to the formula

overlap(d1, d2) =
d1 · d2

max(d2
1, d2

2)

where d2
1 means d1 · d1 and so on. You can expect this function to re‑

turn a Double between 0 and 1. The overlap between the lists in (2) is
0.5384615384615384.
Second, implement a function that calculates the similarity of two strings,
by first extracting the substrings using the clean function from (1) and
then calculating the overlap of the resulting documents.

[0.5 Marks]

4


