
PEP Scala (5)
Email: christian.urban at kcl.ac.uk
Office: N7.07 (NorthWing, Bush House)

Slides & Code: KEATS

PDF: A Crash-Course in Scala

Office Hours: Thursdays 12:00 – 14:00
Additionally: (for Scala) Tuesdays 10:45 – 11:45

PEP (Scala) 05, King’s College London – p. 1/18



PEP Scala (5)
Email: christian.urban at kcl.ac.uk
Office: N7.07 (NorthWing, Bush House)

Slides & Code: KEATS
PDF: A Crash-Course in Scala

Office Hours: Thursdays 12:00 – 14:00
Additionally: (for Scala) Tuesdays 10:45 – 11:45

PEP (Scala) 05, King’s College London – p. 1/18



Marks for Preliminary 8

Rawmarks (265 submissions):

4%: 211
3%: 11
2%: 14
1%: 8
0%: 21

(plagiarism/collusion interviews ongoing again!)
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Plan for Today

Being Lazy
Polymorphic Types
Immutable OOP
Making Fun about Scala
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HowTo calcululate 100Mio
Collatz Series?

(1L to 100_000_000).map(collatz).max
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Polyorphic Types
To be avoided:

def length_string_list(lst: List[String]): Int =
lst match {

case Nil => 0
case x::xs => 1 + length_string_list(xs)

}

def length_int_list(lst: List[Int]): Int =
lst match {

case Nil => 0
case x::xs => 1 + length_int_list(xs)

}
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Polyorphic Types
def length[A](lst: List[A]): Int = lst match {

case Nil => 0
case x::xs => 1 + length(xs)

}

length(List(”1”, ”2”, ”3”, ”4”))
length(List(1, 2, 3, 4))

def map[A, B](lst: List[A], f: A => B): List[B] =
lst match {

case Nil => Nil
case x::xs => f(x)::map(xs, f)

}
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DFAs
A deterministic finite automaton (DFA) consists of 5
things:
an alphabet Σ

a set of states Qs
one of these states is the start state Q0

some states are accepting states F, and
there is transition function δ

which takes a state and a character as arguments and produces a
new state; this function might not be everywhere defined

A(Σ,Qs,Q0, F, δ)
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Compilers 6CCS3CFL

WHILE Language
compiler

Fact

Fib

Primes

JVM

LLVM(x86)
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Compilers 6CCS3CFL

WHILE Language
compiler

Fact

Fib

Primes

BrainF**k

JVM

LLVM(x86)
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Dijkstra on Testing

“Program testing can be a very effective way to show
the presence of bugs, but it is hopelessly inadequate
for showing their absence.”
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Proving Programs to be Correct
Theorem: There are infinitely many prime numbers.

Proof…

similarly

Theorem: The program is doing what it is supposed to be
doing.

Long, long proof…

This can be a gigantic proof. The only hope is to have help from the
computer. ‘Program’ is here to be understood to be quite general
(compiler, OS, …).
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CanThis Be Done?

in 2011, verification of a small C-compiler (CompCert)
“if my input program has a certain behaviour, then the
compiled machine code has the same behaviour”
is as good as gcc ‐O1, but much, much less buggy
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Fuzzy Testing C-Compilers
tested GCC, LLVM and others by randomly generating
C-programs
found more than 300 bugs in GCC and also many in
LLVM (some of them highest-level critical)

about CompCert:

“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are absent.
As of early 2011, the under-development version of
CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for lack of
trying: we have devoted about six CPU-years to the task.”
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seL4 / Isabelle

verified a microkernel operating system (≈8000 lines of
C code)

US DoD has competitions to hack into drones; they
found that the isolation guarantees of seL4 hold up

CompCert and seL4 sell their code
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Where to go on from here?

Martin Odersky (EPFL)…he is currently throwing out
everything and starts again with the dotty compiler for
Scala 3.0

Elm (http://elm‐lang.org)…web applications
with style

Haskell, Ocaml, Standard ML, Scheme, …
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http://elm-lang.org
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Mind-Blowing Programming Languages:
Scala ?


