
PEP Scala (5)
Email: christian.urban at kcl.ac.uk
Office: N7.07 (NorthWing, Bush House)

Slides & Code: KEATS

PDF: A Crash-Course in Scala

Office Hours: Thursdays 12:00 – 14:00
Additionally: (for Scala) Tuesdays 10:45 – 11:45

PEP (Scala) 05, King’s College London – p. 1/18

PEP Scala (5)
Email: christian.urban at kcl.ac.uk
Office: N7.07 (NorthWing, Bush House)

Slides & Code: KEATS
PDF: A Crash-Course in Scala

Office Hours: Thursdays 12:00 – 14:00
Additionally: (for Scala) Tuesdays 10:45 – 11:45

PEP (Scala) 05, King’s College London – p. 1/18

Marks for Preliminary 8

Rawmarks (265 submissions):

4%: 211
3%: 11
2%: 14
1%: 8
0%: 21

(plagiarism/collusion interviews ongoing again!)

PEP (Scala) 05, King’s College London – p. 2/18

Plan for Today

Being Lazy
Polymorphic Types
Immutable OOP
Making Fun about Scala

PEP (Scala) 05, King’s College London – p. 3/18

HowTo calcululate 100Mio
Collatz Series?

(1L to 100_000_000).map(collatz).max

PEP (Scala) 05, King’s College London – p. 4/18

Polyorphic Types
To be avoided:

def length_string_list(lst: List[String]): Int =
lst match {

case Nil => 0
case x::xs => 1 + length_string_list(xs)

}

def length_int_list(lst: List[Int]): Int =
lst match {

case Nil => 0
case x::xs => 1 + length_int_list(xs)

}

PEP (Scala) 05, King’s College London – p. 5/18

Polyorphic Types
def length[A](lst: List[A]): Int = lst match {

case Nil => 0
case x::xs => 1 + length(xs)

}

length(List(”1”, ”2”, ”3”, ”4”))
length(List(1, 2, 3, 4))

def map[A, B](lst: List[A], f: A => B): List[B] =
lst match {

case Nil => Nil
case x::xs => f(x)::map(xs, f)

}

PEP (Scala) 05, King’s College London – p. 6/18

DFAs

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

PEP (Scala) 05, King’s College London – p. 7/18

DFAs

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

PEP (Scala) 05, King’s College London – p. 7/18

DFAs

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

PEP (Scala) 05, King’s College London – p. 7/18

a

DFAs

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

PEP (Scala) 05, King’s College London – p. 7/18

ab

DFAs

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

PEP (Scala) 05, King’s College London – p. 7/18

aba

DFAs

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

PEP (Scala) 05, King’s College London – p. 7/18

abaa

DFAs

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

PEP (Scala) 05, King’s College London – p. 7/18

abaaa ⇒ yes

DFAs
A deterministic finite automaton (DFA) consists of 5
things:
an alphabet Σ

a set of states Qs
one of these states is the start state Q0

some states are accepting states F, and
there is transition function δ

which takes a state and a character as arguments and produces a
new state; this function might not be everywhere defined

A(Σ,Qs,Q0, F, δ)

PEP (Scala) 05, King’s College London – p. 8/18

NFAs

Q0start Q1 Q2

b

b

a

a

a, b

a

PEP (Scala) 05, King’s College London – p. 9/18

Compilers 6CCS3CFL

WHILE Language
compiler

Fact

Fib

Primes

JVM

LLVM(x86)

PEP (Scala) 05, King’s College London – p. 10/18

Compilers 6CCS3CFL

WHILE Language
compiler

Fact

Fib

Primes

BrainF**k

JVM

LLVM(x86)

PEP (Scala) 05, King’s College London – p. 10/18

Dijkstra on Testing

“Program testing can be a very effective way to show
the presence of bugs, but it is hopelessly inadequate
for showing their absence.”

PEP (Scala) 05, King’s College London – p. 11/18

Proving Programs to be Correct
Theorem: There are infinitely many prime numbers.

Proof…

similarly

Theorem: The program is doing what it is supposed to be
doing.

Long, long proof…

This can be a gigantic proof. The only hope is to have help from the
computer. ‘Program’ is here to be understood to be quite general
(compiler, OS, …).

PEP (Scala) 05, King’s College London – p. 12/18

CanThis Be Done?

in 2011, verification of a small C-compiler (CompCert)
“if my input program has a certain behaviour, then the
compiled machine code has the same behaviour”
is as good as gcc ‐O1, but much, much less buggy

PEP (Scala) 05, King’s College London – p. 13/18

Fuzzy Testing C-Compilers
tested GCC, LLVM and others by randomly generating
C-programs
found more than 300 bugs in GCC and also many in
LLVM (some of them highest-level critical)

about CompCert:

“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are absent.
As of early 2011, the under-development version of
CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for lack of
trying: we have devoted about six CPU-years to the task.”

PEP (Scala) 05, King’s College London – p. 14/18

seL4 / Isabelle

verified a microkernel operating system (≈8000 lines of
C code)

US DoD has competitions to hack into drones; they
found that the isolation guarantees of seL4 hold up

CompCert and seL4 sell their code

PEP (Scala) 05, King’s College London – p. 15/18

seL4 / Isabelle

verified a microkernel operating system (≈8000 lines of
C code)

US DoD has competitions to hack into drones; they
found that the isolation guarantees of seL4 hold up

CompCert and seL4 sell their code

PEP (Scala) 05, King’s College London – p. 15/18

Where to go on from here?

Martin Odersky (EPFL)…he is currently throwing out
everything and starts again with the dotty compiler for
Scala 3.0

Elm (http://elm‐lang.org)…web applications
with style

Haskell, Ocaml, Standard ML, Scheme, …

PEP (Scala) 05, King’s College London – p. 16/18

http://elm-lang.org

Questions?
*
* *

* *
* * * *
* *
* * * *
* * * *
* * * * * * * *

* *
* * * *
* * * *
* * * * * * * *
* * * *
* * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * * * *
* *
* * * *
* * * *

* * * * * * * *
* * * *
* * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * *
* * * *

* * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *

* *

PEP (Scala) 05, King’s College London – p. 17/18

++++++++[>+>++++<<‐]>++>>
+<[‐[>>+<<‐]+>>]>+[‐<<<[‐
>[+[‐]+>++>>>‐<<]<[<]>>++
++++[<<+++++>>‐]+<<++.[‐]
<<]>.>+[>>]>+]

PEP (Scala) 05, King’s College London – p. 18/18

Mind-Blowing Programming Languages:
Scala ?

