Main Part 1 (Scala, 6 Marks)

A Important

* Make sure the files you submit can be processed by just calling
scala <<filename.scala>> on the command line.! Use the template
files provided and do not make any changes to arguments of functions
or to any types. You are free to implement any auxiliary function you
might need.

¢ Do not leave any test cases running in your code because this might
slow down your program! Comment out test cases before submission,
otherwise you might hit a time-out.

* Do not use any mutable data structures in your submissions! They are
not needed. This means you cannot create new Arrays or ListBuffers,
for example.

* Do not use return in your code! It has a different meaning in Scala than
in Java. It changes the meaning of your program, and you should never
use it.

* Do not use var! This declares a mutable variable. Only use val!

* Do not use any parallel collections! No .par therefore! Our testing and
marking infrastructure is not set up for it.

Also note that the running time of each part will be restricted to a maximum of
30 seconds on my laptop.

A Disclaimer

It should be understood that the work you submit represents your own effort!
You have implemented the code entirely on your own. You have not copied
from anyone else. Do not be tempted to ask Github Copilot for help or do any
other shenanigans like this! An exception is the Scala code I showed during the
lectures or uploaded to KEATS, which you can freely use.

Reference Implementation

Like the C++ assignments, the Scala assignments will work like this: you push
your files to GitHub and receive (after sometimes a long delay) some automated
feedback. In the end we take a snapshot of the submitted files and apply an
automated marking script to them.

L All major OSes, including Windows, have a command line. So there is no good reason to not
download Scala, install it and run it on your own computer. Just do it!

In addition, the Scala coursework comes with a reference implementation in
form of jar-files. This allows you to run any test cases on your own com-
puter. For example you can call Scala on the command line with the option -cp
drumb. jar and then query any function from the template file. Say you want to
find out what the function get_january_data produces: for this you just need
to prefix them with the object name M1 and call them with some arguments:

$ scala -cp drumb.jar

scala> M1l.get_january_data("FB", 2014)
val res2: List[String] = List(2014-01-02,54.709999,....)

Hints

For Main Part 1: useful string functions: .startsWith(...) for checking whether
a string has a given prefix, _ ++ _ for concatenating two strings; useful option
functions: .flatten flattens a list of options such that it filters way all None’s,
Try(...).getOrElse ... runs some code that might raise an exception—if
yes, then a default value can be given; useful list functions: .head for obtaining
the first element in a non-empty list, . length for thelength of alist; . filter(...)
for filtering out elements in a list; . getLines.tolList for obtaining a list of lines

from a file; .split(",").toList for splitting strings according to a comma.

Note! Fortunately Scala supports operator overloading. But make sure you
understand the difference between 100 / 3 and 100.0 / 3!

Main Part 1 (6 Marks, file drumb.scala)

A purely fictional character named Mr T. Drumb inherited in 1978 approxi-
mately 200 Million Dollar from his father. Mr Drumb prides himself to be a
brilliant business man because nowadays it is estimated he is 3 Billion Dollar
worth (one is not sure, of course, because Mr Drumb refuses to make his tax
records public).

Since the question about Mr Drumb’s business acumen remains open, let’s
do a quick back-of-the-envelope calculation in Scala whether his claim has any
merit. Let’s suppose we are given $100 in 1978 and we follow a really dumb
investment strategy, namely:

* We blindly choose a portfolio of stocks, say some Blue-Chip stocks or
some Real Estate stocks.

¢ If some of the stocks in our portfolio are traded in January of a year, we
invest our money in equal amounts in each of these stocks. For example
if we have $100 and there are four stocks that are traded in our portfolio,
we buy $25 worth of stocks from each. (Be careful to also test cases where
you trade with 3 stocks.)

* Nextyear in January, we look at how our stocks did, liquidate everything,
and re-invest our (hopefully) increased money in again the stocks from
our portfolio (there might be more stocks available, if companies from
our portfolio got listed in that year, or less if some companies went bust
or were de-listed).

e We do this for 41 years until January 2019 and check what would have
become out of our $100.

Until Yahoo was bought by Altaba a few years ago, historical stock market data
for such back-of-the-envelope calculations was freely available online. Unfor-
tunately nowadays this kind of data is more difficult to obtain, unless you are
prepared to pay extortionate prices or be severely rate-limited. Therefore this
part comes with a number of files containing CSV-lists with the historical stock
prices for the companies in our portfolios. Use these files for the following
tasks.

Note: Do not hardcode the path to the CSV-files. The testing framework will
assume that these files are in the same directory as the drumb.scala file.

Tasks

(1) Write a function get_january_data that takes a stock symbol and a year
as arguments. The function reads the corresponding CSV-file and returns
the list of strings that start with the given year (each line in the CSV-list is
of the form someyear-01-someday, someprice). [0.5 Marks]

(2) Write a function get_first_price that takes again a stock symbol and a
year as arguments. It should return the first January price for the stock
symbol in the given year. For this it uses the list of strings generated by
get_january_data. A problem is that normally a stock exchange is not
open on 1st of January, but depending on the day of the week on a later
day (maybe 3rd or 4th). The easiest way to solve this problem is to obtain
the whole January data for a stock symbol and then select the earliest, or
first, entry in this list. The stock price of this entry should be converted
into a double. Such a price might not exist, in case the company does not
exist in the given year. For example, if you query for Google in January
of 1980, then clearly Google did not exist yet. Therefore you are asked to
return a trade price with type Option[Double]...None will be the value
for when no price exists; Some if there is a price. [1 Mark]

(3) Writeafunction get_prices that takes a portfolio (a list of stock symbols),
ayears range and gets all the first trading prices for each year in the range.
You should organise this as a list of lists of Option[Double]’s. The inner
lists are for all stock symbols from the portfolio and the outer list for the
years. For example for Google and Apple in years 2010 (first line), 2011
(second line) and 2012 (third line) you obtain:

List(List(Some(312.204773), Some(26.782711)),
List(Some(301.0466), Some(41.244694)),
List(Some(331.462585), Some(51.464207))))

[1 Mark]

(4) Write a function that calculates the change factor (delta) for how a stock
price has changed from one year to the next. This is only well-defined, if
the corresponding company has been traded in both years. In this case
you can calculate

pricepey — priceyy
priceola

If the change factor is defined, you should returnit as Some (change_factor);
if not, you should return None. [1 Mark]

(5) Write a function that calculates all change factors (deltas) for the prices
we obtained in Task (2). For the running example of Google and Apple
for the years 2010 to 2012 you should obtain 4 change factors:

List(List(Some(-0.03573991804411003), Some(0.539974575389325)),
List(Some(0.10103414222249969), Some(0.24777764141006836)))

That means Google did a bit badly in 2010, while Apple did very well.
Both did OK in 2011. Make sure you handle the cases where a company
is not listed in a year. In such cases the change factor should be None
(recall Task (4)). [1 Mark]

(6) Write a function that calculates the “yield”, or balance, for one year for
our portfolio. This function takes the change factors, the starting balance
and the year as arguments. If no company from our portfolio existed in
that year, the balance is unchanged. Otherwise we invest in each exist-
ing company an equal amount of our balance. Using the change factors
computed under Task (2), calculate the new balance. Say we had $100 in
2010, we would have received in our running example involving Google
and Apple:

$50 * -0.03573991804411003 + $50 * ©.539974575389325
= $25.21173286726075

as profit for that year, and our new balance for 2011 is $125 when con-
verted to a Long. Since yearly_yield should produce a Long, there are a
number of ways how to round doubles. One way to do the calculation is
to calculate the profit first as Double, and then round the result down to
a Long (using .tolLong) and add it to the balance (which is also a Long).
[1 Mark]

(7) Write a function that calculates the overall balance for a range of years
where each year the yearly profit is compounded to the new balances and
then re-invested into our portfolio. For this use the function and results
generated under (6).

[0.5 Marks]

Test Data: File drumb. scala contains two portfolios collected from the S&P 500,
one for blue-chip companies, including Facebook, Amazon and Baidu; and an-
other for listed real-estate companies, whose names I have never heard of. Fol-
lowing the dumb investment strategy from 1978 until 2019 would have turned
a starting balance of $100 into roughly $39,162 for real estate and a whopping
$462,199 for blue chips. Note when comparing these results with your own
calculations: there might be some small rounding errors, which when com-
pounded lead to moderately different values.

Moral: Reflecting on our assumptions, we are over-estimating our yield in
many ways: first, who can know in 1978 about what will turn out to be a blue
chip company. Also, since the portfolios are chosen from the current S&P 500,

they do not include the myriad of companies that went bust or were de-listed
over the years. So where does this leave our fictional character Mr T. Drumb?
Well, given his inheritance, a really dumb investment strategy would have done
equally well, if not much better. Anyhow, one would assume that this guy is by
now locked up in a prison and the key thrown away, but alas he is still around
annoying commonsense people. What a pity.

