
A Crash‑Course in Scala
“Scala — Slowly compiled academic language”

— a joke(?) found on Twitter

Introduction
Scala is a programming language that combines functional and object‑oriented
programming‑styles. It has received quite a bit of attention in the last five or
so years. One reason for this attention is that, like the Java programming lan‑
guage, Scala compiles to the Java Virtual Machine (JVM) and therefore Scala
programs can run under MacOSX, Linux and Windows. Because of this it has
also access to the myriads of Java libraries. Unlike Java, however, Scala often
allows programmers to write very concise and elegant code. Some therefore
say “Scala is the better Java”.1

Anumber of companies—theGuardian, Twitter, Coursera, FourSquare, Net‑
flix, LinkedIn, ITV to name a few—either use Scala exclusively in production
code, or at least to some substantial degree. Scala seems also useful in job‑
interviews (especially in data science) according to this anecdotal report

http://techcrunch.com/2016/06/14/scala‐is‐the‐new‐golden‐child

The official Scala compiler can be downloaded from

http://www.scala‐lang.org

Just make sure you are downloading the “battle tested” version of Scala 2.13
This is the one I am going to use in the lectures and in the coursework. The
newer Scala 3.0 & 3.1 still have some features not fully implemented.

If you are interested, there are also experimental backends of Scala for produc‑
ing codeunderAndroid (http://scala‐android.org); for generating JavaScript
code (https://www.scala‐js.org); and there is work under way to have a
native Scala compiler generating X86‑code (http://www.scala‐native.org).
Though be warned these backends are still rather beta or even alpha.

VS Code and Scala
I found a convenient IDE for writing Scala programs isMicrosoft’s Visual Studio
Code (VS Code) which runs under MacOSX, Linux and obviouslyWindows.2 It
can be downloaded for free from

© Christian Urban, King’s College London, 2017, 2018, 2019, 2020, 2021
1from https://www.slideshare.net/maximnovak/joy‐of‐scala
2…unlikeMicrosoft Visual Studio—note theminuscule difference in the name—which is a heavy‑

duty, Windows‑only IDE…jeez, with all their money could they not have come up with a com‑
pletely different name for a complete different project? For the pedantic, Microsoft Visual Studio is
an IDE, whereas Visual Studio Code is considered to be a source code editor. Anybody knows what
the difference is?

1

http://techcrunch.com/2016/06/14/scala-is-the-new-golden-child
http://www.scala-lang.org
http://scala-android.org
https://www.scala-js.org
http://www.scala-native.org
https://www.slideshare.net/maximnovak/joy-of-scala

Figure 1: My installation of VS Code includes the following packages from
Marketplace: Scala Syntax (official) 0.3.4, Code Runner 0.9.13, Code Spell
Checker 1.7.17, Rewrap 1.9.1 and Subtle Match Brackets 3.0.0. I have also
bound the keys Ctrl Ret to the action “Run‑Selected‑Text‑In‑Active‑Terminal”
in order to quickly evaluate small code snippets in the Scala REPL. I use the
internal terminal to run Scala 2.13.1.

https://code.visualstudio.com

and should already come pre‑installed in the Department (together with the
Scala compiler). Being a project that just started in 2015, VS Code is relatively
new and thus far from perfect. However it includes a Marketplace from which
a multitude of extensions can be downloaded that make editing and running
Scala code a little easier (see Figure 1 for my setup).

What I like most about VS Code is that it provides easy access to the Scala
REPL. But if you prefer another editor for coding, it is also painless toworkwith
Scala completely on the command line (as youmight have done with g++ in the
earlier part of PEP). For the lazybones among us, there are even online editors
and environments for developing and running Scala programs: ScalaFiddle and
Scastie are two of them. They require zero setup (assuming you have a browser
handy). You can access them at

https://scalafiddle.io
https://scastie.scala‐lang.org

But you should be careful if you use them for your coursework: they are meant
to play around, not really for serious work.

As one might expect, Scala can be used with the heavy‑duty IDEs Eclipse
and IntelliJ. A ready‑made Scala bundle for Eclipse is available from

http://scala‐ide.org/download/sdk.html

2

https://code.visualstudio.com
https://scalafiddle.io
https://scastie.scala-lang.org
http://scala-ide.org/download/sdk.html

Also IntelliJ includes plugins for Scala. BUT, I do not recommend the usage
of either Eclipse or IntelliJ for PEP: these IDEs seem to make your life harder,
rather than easier, for the small programs that we will write in this module.
They are really meant to be used when you have a million‑lines codebase than
with our small “toy‑programs”…for example why on earth am I required to
create a completely new project with several subdirectories when I just want to
try out 20‑lines of Scala code? Your mileage may vary though. ;o)

Why Functional Programming?
Before we go on, let me explain a bit more why we want to inflict upon you an‑
other programming language. You hopefully havemastered Java andC++…the
world should be your oyster, no? Well, matters are not as simple as one might
wish. Wedo require Scala in PEP, but actuallywedonot religiously carewhether
you learn Scala—after all it is just a programming language (albeit a nifty one
IMHO). What we do care about is that you learn about functional programming.
Scala is just the vehicle for that. Still, you need to learn Scala well enough to
get good marks in PEP, but functional programming could perhaps equally be
taught with Haskell, F#, SML, Ocaml, Kotlin, Clojure, Scheme, Elm and many
other functional programming languages.

Very likelywriting programs in a functional programming language is quite
different fromwhat you are used to in your study so far. Itmight even be totally
alien to you. The reason is that functional programming seems to go against
the core principles of imperative programming (which is what you do in Java and
C/C++ for example). The main idea of imperative programming is that you
have some form of state in your program and you continuously change this
state by issuing some commands—for example for updating a field in an array
or for adding one to a variable and so on. The classic example for this style of
programming is a for‑loop in C/C++. Consider the snippet:

for (int i = 10; i < 20; i++) {
//...do something with i...

}

Here the integer variable i embodies the state, which is first set to 10 and then
increased by one in each loop‑iteration until it reaches 20 at which point the
loop exits. When this code is compiled and actually runs, there will be some
dedicated space reserved for i in memory. This space of typically 32 bits con‑
tains i’s current value…10 at the beginning, and then the content will be over‑
written with new content in every iteration. The main point here is that this
kind of updating, or overwriting, ofmemory is 25.806…orTHEROOTOFALL
EVIL!!

3

…Well, it is perfectly benign if you have a sequential program that gets run
instruction by instruction...nicely one after another. This kind of running code
uses a single core of your CPU and goes as fast as your CPU frequency, also
called clock‑speed, allows. The problem is that this clock‑speed has not much
increased over the past decade and no dramatic increases are predicted for any
time soon. So you are a bit stuck. This is unlike previous generations of devel‑
opers who could rely upon the fact that approximately every 2 years their code
would run twice as fast because the clock‑speed of their CPUs got twice as fast.

Unfortunately this does not happen any more nowadays. To get you out of
this dreadful situation, CPU producers pile more and more cores into CPUs in
order to make them more powerful and potentially make software faster. The
task for you as developer is to take somehow advantage of these cores by run‑
ning as much of your code as possible in parallel on as many cores you have
available (typically 4 or more in modern laptops and sometimes much more
on high‑end machines). In this situation mutable variables like i in the C‑code
above are evil, or at least a major nuisance: Because if you want to distribute
some of the loop‑iterations over several cores that are currently idle in your sys‑
tem, you need to be extremely careful about who can read and overwrite the
variable i.3 Especially the writing operation is critical because you do not want
that conflicting writes mess about with i. Take my word: an untold amount
of misery has arisen from this problem. The catch is that if you try to solve
this problem in C/C++ or Java, and be as defensive as possible about reads and
writes to i, then you need to synchronise access to it. The result is that very
often your program waits more than it runs, thereby defeating the point of try‑
ing to run the program in parallel in the first place. If you are less defensive,
then usually all hell breaks loose by seemingly obtaining random results. And
forget the idea of being able to debug such code.

The central idea of functional programming is to eliminate any state from
programs—or at least from the “interesting bits” of the programs. Because then
it is easy to parallelise the resulting programs: if you do not have any state, then
once created, all memory content stays unchanged and reads to such memory
are absolutely safe without the need of any synchronisation. An example is
given in Figure 2 where in the absence of the annoying state, Scala makes it
very easy to calculate the Mandelbrot set on as many cores of your CPU as pos‑
sible. Why is it so easy in this example? Because each pixel in the Mandelbrot
set can be calculated independently and the calculation does not need to up‑
date any variable. It is so easy in fact that going from the sequential version of

3If you are of the mistaken belief that nothing nasty can happen to i inside the for‑loop, then
you need to go back over the C++ material.

4

the Mandelbrot program to the parallel version can be achieved by adding just
eight characters—in two places you have to add .par. Try the same in C/C++
or Java!

But remember this easy parallelisation of code requires thatwe have no state
in our programs…that is no counters like i in for‑loops. You might then ask,
how do I write loops without such counters? Well, teaching you that this is
possible is one of the main points of the Scala‑part in PEP. I can assure you it
is possible, but you have to get your head around it. Once you have mastered
this, it will be fun to have no state in your programs (a side product is that
it much easier to debug state‑less code and also more often than not easier to
understand). So have fun with Scala!4

If you need any after‑work distractions, you might have fun reading this about
FP (functional programming):

https://medium.com/better‐programming/fp‐toy‐7f52ea0a947e

The Very Basics
One advantage of Scala over Java is that it includes an interpreter (a REPL, or
Read‑Eval‑Print‑Loop) with which you can run and test small code snippets
without the need of a compiler. This helps a lot with interactively developing
programs. It is my preferred way of writing small Scala programs. Once you
installed Scala, you can start the interpreter by typing on the command line:

$ scala
Welcome to Scala 2.13.1 (Java HotSpot(TM) 64‐Bit Server VM, Java 9).
Type in expressions for evaluation. Or try :help.

scala>

The precise response may vary depending on the version and platform where
you installed Scala. At the Scala prompt you can type things like 2 + 3 Ret and
the output will be

scala> 2 + 3
res0: Int = 5

4If you are still not convinced about the function programming “thing”, there are a few more
arguments: a lot of research in programming languages happens to take place in functional pro‑
gramming languages. This has resulted in ultra‑useful features such as pattern‑matching, strong
type‑systems, laziness, implicits, algebraic datatypes to name a few. Imperative languages seem
to often lag behind in adopting them: I know, for example, that Java will at some point in
the future support pattern‑matching, which has been used for example in SML for at least 40(!)
years. See http://cr.openjdk.java.net/~briangoetz/amber/pattern‐match.html. Automatic
garbage collection was included in Java in 1995; the functional language LISP had this already in
1958. Genericswere added to Java 5 in 2004; the functional language SMLhad it since 1990. Higher‑
order functions were added to C# in 2007, to Java 8 in 2014; again LISP had them since 1958. Also
Rust, a C‑like programming language that has been developed since 2010 and is gaining quite some
interest, borrows many ideas from functional programming from yesteryear.

5

https://medium.com/better-programming/fp-toy-7f52ea0a947e
http://cr.openjdk.java.net/~briangoetz/amber/pattern-match.html

A Scala program for generating pretty pictures of the Mandelbrot set.
(See https://en.wikipedia.org/wiki/Mandelbrot_set or

https://www.youtube.com/watch?v=aSg2Db3jF_4):

sequential version: parallel version on 4 cores:

for (y <‐ (0 until H)) {
for (x <‐ (0 until W)) {

val c = start +
(x * d_x + y * d_y * i)

val iters = iterations(c, max)
val colour =

if (iters == max) black
else colours(iters % 16)

pixel(x, y, colour)
}
viewer.updateUI()

}

for (y <‐ (0 until H)/*@\keys{\texttt{.par}}@*/) {
for (x <‐ (0 until W)/*@\keys{\texttt{.par}}@*/) {

val c = start +
(x * d_x + y * d_y * i)

val iters = iterations(c, max)
val colour =

if (iters == max) black
else colours(iters % 16)

pixel(x, y, colour)
}
viewer.updateUI()

}

Figure 2: The code of the “main” loops in my version of the mandelbrot pro‑
gram. The parallel version differs only in .par being added to the “ranges” of
the x and y coordinates. As can be seen from the CPU loads, in the sequential
version there is a lower peak for an extended period, while in the parallel ver‑
sion there is a short sharp burst for essentially the same workload…meaning
you get more work done in a shorter amount of time. This easy parallelisation
only works reliably with an immutable program.

6

https://en.wikipedia.org/wiki/Mandelbrot_set
https://www.youtube.com/watch?v=aSg2Db3jF_4

The answer means that he result of the addition is of type Int and the actual
result is 5; res0 is a name that Scala gives automatically to the result. You can
reuse this name later on, for example

scala> res0 + 4
res1: Int = 9

Another classic example you can try out is

scala> print("hello world")
hello world

Note that in this case there is no result. The reason is that print does not actu‑
ally produce a result (there is no resX and no type), rather it is a function that
causes the side‑effect of printing out a string. Once you are more familiar with
the functional programming‑style, you will know what the difference is be‑
tween a function that returns a result, like addition, and a function that causes
a side‑effect, like print. We shall come back to this point later, but if you are
curious now, the latter kind of functions always has Unit as return type. It is
just not printed by Scala.

You can try more examples with the Scala REPL, but feel free to first guess
what the result is (not all answers by Scala are obvious):

scala> 2 + 2
scala> 1 / 2
scala> 1.0 / 2
scala> 1 / 2.0
scala> 1 / 0
scala> 1.0 / 0.0
scala> true == false
scala> true && false
scala> 1 > 1.0
scala> "12345".length
scala> List(1,2,1).size
scala> Set(1,2,1).size
scala> List(1) == List(1)
scala> Array(1) == Array(1)
scala> Array(1).sameElements(Array(1))

Also observe carefully what Scala responds in the following three instances
involving the constant 1—can you explain the differences?

scala> 1
scala> 1L
scala> 1F

Please take the Scala REPL seriously: If you want to take advantage of my ref‑
erence implementation for the assignments, you will need to be able to “play
around” with it!

7

Standalone Scala Apps
If you want to write a standalone app in Scala, you can implement an object
that is an instance of App. For example write

object Hello extends App {
println("hello world")

}

save it in a file, say hello‐world.scala, and then run the compiler (scalac)
and start the runtime environment (scala):

$ scalac hello‐world.scala
$ scala Hello
hello world

Like Java, Scala targets the JVM and consequently Scala programs can also be
executed by the bog‑standard Java Runtime. This only requires the inclusion
of scala‐library.jar, which on my computer can be done as follows:

$ scalac hello‐world.scala
$ java ‐cp /usr/local/src/scala/lib/scala‐library.jar:. Hello
hello world

You might need to adapt the path to where you have installed Scala.

Values
In the lectures I will try to avoid as much as possible the term variables familiar
from other programming languages. The reason is that Scala has values, which
can be seen as abbreviations of larger expressions. The keyword for defining
values is val. For example

scala> val x = 42
x: Int = 42

scala> val y = 3 + 4
y: Int = 7

scala> val z = x / y
z: Int = 6

As can be seen, we first define x and y with admittedly some silly expressions,
and then reuse these values in the definition of z. All easy, right? Why the
kerfuffle about values? Well, values are immutable. You cannot change their
value after you defined them. If you try to reassign z above, Scala will yell at
you:

8

scala> z = 9
error: reassignment to val

z = 9
^

So it would be a bit absurd to call values as variables...you cannot change them;
they cannot vary. You might think you can reassign them like

scala> val x = 42
scala> val z = x / 7
scala> val x = 70
scala> println(z)

but try to guess what Scala will print out for z? Will it be 6 or 10? A final word
about values: Try to stick to the convention that names of values should be
lower case, like x, y, foo41 and so on. Upper‑case names you should reserve for
what is called constructors. And forgive me when I call values as variables…it
is just something that has been in imprinted into my developer‑DNA during
my early days and is difficult to get rid of. ;o)

Function Definitions
We do functional programming! So defining functions will be our main occu‑
pation. As an example, a function named f taking a single argument of type
Int can be defined in Scala as follows:

def f(x: Int) : String = ...EXPR...

This function returns the value resulting from evaluating the expression EXPR
(whatever is substituted for this). Since we declared String, the result of this
function will be of type String. It is a good habit to always include this infor‑
mation about the return type, while it is only strictly necessary to give this type
in recursive functions. Simple examples of Scala functions are:

def incr(x: Int) : Int = x + 1
def double(x: Int) : Int = x + x
def square(x: Int) : Int = x * x

The general scheme for a function is

def fname(arg1: ty1, arg2: ty2,..., argn: tyn): rty = {
...BODY...

}

where each argument, arg1, arg2 and so on, requires its type and the result
type of the function, rty, should also be given. If the body of the function is
more complex, then it can be enclosed in braces, like above. If it it is just a
simple expression, like x + 1, you can omit the braces. Very often functions
are recursive (that is call themselves), like the venerable factorial function:

9

def fact(n: Int) : Int =
if (n == 0) 1 else n * fact(n ‐ 1)

We could also have written this with braces as
def fact(n: Int) : Int = {

if (n == 0) 1
else n * fact(n ‐ 1)

}

but this seems a bit overkill for a small function like fact. Note that Scala
does not have a then‑keyword in an if‑statement. Also important is that there
should be always an else‑branch. Never write an if without an else, unless
you know what you are doing! While def is the main mechanism for defining
functions, there are a few other ways for doing this. We will see some of them
in the next sections.

Before we go on, let me explain one tricky point in function definitions, es‑
pecially in larger definitions. What does a Scala function return as result? Scala
has a return keyword, but it is used for something different than in Java (and
C/C++). Therefore please make sure no return slips into your Scala code.

So in the absence of return, what value does a Scala function actually pro‑
duce? A rule‑of‑thumb is whatever is in the last line of the function is the value
that will be returned. Consider the following example:5

def average(xs: List[Int]) : Int = {
val s = xs.sum
val n = xs.length
s / n

}

In this example the expression s / n is in the last line of the function—so this
will be the result the function calculates. The two lines before just calculate
intermediate values. This principle of the “last‑line” comes in handy when you
need to print out values, for example, for debugging purposes. Suppose you
want rewrite the function as

def average(xs: List[Int]) : Int = {
val s = xs.sum
val n = xs.length
val h = xs.head
println(s"Input $xs with first element $h")
s / n

}

Here the function still only returns the expression in the last line. The println
before just prints out some information about the input of this function, but

5We could have written this function in just one line, but for the sake of argument lets keep the
two intermediate values.

10

does not contribute to the result of the function. Similarly, the value h is used
in the println but does not contribute to what integer is returned.

A caveat is that the idea with the “last line” is only a rough rule‑of‑thumb.
A better rule might be: the last expression that is evaluated in the function.
Consider the following version of average:

def average(xs: List[Int]) : Int = {
if (xs.length == 0) 0
else xs.sum / xs.length

}

What does this function return? Well there are two possibilities: either the re‑
sult of xs.sum / xs.length in the last line provided the list xs is nonempty,
or if the list is empty, then it will return 0 from the if‑branch (which is techni‑
cally not the last line, but the last expression evaluated by the function in the
empty‑case).

Summing up, do not use return in your Scala code! A function returns
what is evaluated by the function as the last expression. There is always only
one such last expression. Previous expressions might calculate intermediate
values, but they are not returned. If your function is supposed to return mul‑
tiple things, then one way in Scala is to use tuples. For example returning the
minimum, average and maximum can be achieved by

def avr_minmax(xs: List[Int]) : (Int, Int, Int) = {
if (xs.length == 0) (0, 0, 0)
else (xs.min, xs.sum / xs.length, xs.max)

}

which still satisfies the rule‑of‑thumb.

Loops, or Better the Absence Thereof
Coming from Java or C/C++, you might be surprised that Scala does not really
have loops. It has instead, what is in functional programming called, maps. To
illustrate how they work, let us assume you have a list of numbers from 1 to
8 and want to build the list of squares. The list of numbers from 1 to 8 can be
constructed in Scala as follows:

scala> (1 to 8).toList
res1: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8)

Generating from this list the list of corresponding squares in a programming
language such as Java, youwould assume the list is given as a kind of array. You
would then iterate, or loop, an index over this array and replace each entry in
the array by the square. Right? In Scala, and in other functional programming
languages, you use maps to achieve the same.

Amap essentially takes a function that describes how each element is trans‑
formed (in this example the function is n → n ∗ n) and a list over which this

11

function should work. Pictorially you can think of the idea behind maps as
follows:

List(1, 2, 3, 4, 5, 6, 7, 8)

List(1, 4, 9, 16, 25, 36, 49, 64)

n

n * n

map

On top is the “input” list we want to transform; on the left is the “map” func‑
tion for how to transform each element in the input list (the square function in
this case); at the bottom is the result list of the map. This means that a map
generates a new list, unlike a for‑loop in Java or C/C++ which wouldmost likely
just update the existing list/array.

Now there are two ways for expressing such maps in Scala. The first way
is called a for‑comprehension. The keywords are for and yield. Squaring the
numbers from 1 to 8 with a for‑comprehension would look as follows:

scala> for (n <‐ (1 to 8).toList) yield n * n
res2: List[Int] = List(1, 4, 9, 16, 25, 36, 49, 64)

This for‑comprehension states that from the list of numbers we draw some el‑
ements. We use the name n to range over these elements (whereby the name
is arbitrary; we could use something more descriptive if we wanted to). Using
n we compute the result of n * n after the yield. This way of writing a map
resembles a bit the for‑loops from imperative languages, even though the ideas
behind for‑loops and for‑comprehensions are quite different. Also, this is a sim‑
ple example—what comes after yield can be a complex expression enclosed in
{...}. A more complicated example might be

scala> for (n <‐ (1 to 8).toList) yield {
val i = n + 1
val j = n ‐ 1
i * j + 1

}
res3: List[Int] = List(1, 4, 9, 16, 25, 36, 49, 64)

As you can see in for‑comprehensions above, we specified the list where
each n comes from, namely (1 to 8).toList, and how each element needs to
be transformed. This can also be expressed in a second way in Scala by using
directly the function map as follows:

scala> (1 to 8).toList.map(n => n * n)
res3 = List(1, 4, 9, 16, 25, 36, 49, 64)

12

In this way, the expression n => n * n stands for the function that calculates
the square (this is how the ns are transformed by themap). It might not be obvi‑
ous, but the for‑comprehensions above are just syntactic sugar: when compil‑
ing such code, Scala translates for‑comprehensions into equivalent maps. This
even works when for‑comprehensions get more complicated (see below).

The very charming feature of Scala is that suchmaps or for‑comprehensions
can be written for any kind of data collection, such as lists, sets, vectors, options
and so on. For example if we instead compute the remainders modulo 3 of this
list, we can write

scala> (1 to 8).toList.map(n => n % 3)
res4 = List(1, 2, 0, 1, 2, 0, 1, 2)

If we, however, transform the numbers 1 to 8 not into a list, but into a set, and
then compute the remainders modulo 3 we obtain

scala> (1 to 8).toSet[Int].map(n => n % 3)
res5 = Set(2, 1, 0)

This6 is the correct result for sets, as there are only three equivalence classes of
integers modulo 3. Note that in this example we need to “help” Scala to trans‑
form the numbers into a set of integers by explicitly annotating the type Int.
Since maps and for‑comprehensions are just syntactic variants of each other,
the latter can also be written as

scala> for (n <‐ (1 to 8).toSet[Int]) yield n % 3
res5 = Set(2, 1, 0)

For‑comprehensions can also be nested and the selection of elements can be
guarded. For example if we want to pair up the numbers 1 to 4 with the letters
a to c, we can write

scala> for (n <‐ (1 to 4).toList;
m <‐ ('a' to 'c').toList) yield (n, m)

res6 = List((1,a), (1,b), (1,c), (2,a), (2,b), (2,c),
(3,a), (3,b), (3,c), (4,a), (4,b), (4,c))

In this example the for‑comprehension ranges over two lists, and produces a
list of pairs as output. Or, if we want to find all pairs of numbers between 1 and
3 where the sum is an even number, we can write

scala> for (n <‐ (1 to 3).toList;
m <‐ (1 to 3).toList;
if (n + m) % 2 == 0) yield (n, m)

res7 = List((1,1), (1,3), (2,2), (3,1), (3,3))

The if‑condition in this for‑comprehension filters out all pairs where the sum
is not even (therefore (1, 2), (2, 1) and (3, 2) are not in the result because
their sum is odd).

6This returns actually HashSet(2, 1, 3), but this is just an implementation detail of how sets
are implemented in Scala.

13

To summarise, maps (or for‑comprehensions) transform one collection into
another. For example a list of Ints into a list of squares, and so on. There is no
need for for‑loops in Scala. But please do not be tempted to write anything like

scala> val cs = ('a' to 'h').toList
scala> for (n <‐ (0 until cs.length).toList)

yield cs(n).capitalize
res8: List[Char] = List(A, B, C, D, E, F, G, H)

This is accepted Scala‑code, but utterly bad style (it is more like Java). It can be
written much clearer as:

scala> val cs = ('a' to 'h').toList
scala> for (c <‐ cs) yield c.capitalize
res9: List[Char] = List(A, B, C, D, E, F, G, H)

Results and Side‑Effects
While hopefully all this aboutmaps looks reasonable, there is one complication:
In the examples above we always wanted to transform one list into another list
(e.g. list of squares), or one set into another set (set of numbers into set of re‑
maindersmodulo 3). What happens ifwe justwant to print out a list of integers?
In these cases the for‑comprehensions need to be modified. The reason is that
print, you guessed it, does not produce any result, but only produces what
is in the functional‑programming‑lingo called a side‑effect…it prints something
out on the screen. Printing out the list of numbers from 1 to 5 would look as
follows

scala> for (n <‐ (1 to 5).toList) print(n)
12345

where you need to omit the keyword yield. You can also do more elaborate
calculations such as

scala> for (n <‐ (1 to 5).toList) {
val square = n * n
println(s"$n * $n = $square")

}
1 * 1 = 1
2 * 2 = 4
3 * 3 = 9
4 * 4 = 16
5 * 5 = 25

In this code I use a value assignment (val square = ...) and also what is
called in Scala a string interpolation, written s"...". The latter is for printing
out an equation. It allows me to refer to the integer values n and square inside
a string. This is very convenient for printing out “things”.

14

The corresponding map construction for functions with side‑effects is in
Scala called foreach. So you could also write

scala> (1 to 5).toList.foreach(n => print(n))
12345

or even just

scala> (1 to 5).toList.foreach(print)
12345

If you want to find out more about maps and functions with side‑effects, you
can ponder about the response Scala gives if you replace foreach by map in the
expression above. Scala will still allow map with side‑effect functions, but then
reacts with a slightly interesting result.

Aggregates
There is one more usage of for‑loops in Java, C/C++ and the like: sometimes
you want to aggregate something about a list, for example summing up all its
elements. In this case you cannot use maps, because maps transform one data
collection into another data collection. They cannot be used to generate a single
integer representing an aggregate. So how is this kind of aggregation done in
Scala? Let us suppose you want to sum up all elements from a list. You might
be tempted to write something like

var cnt = 0
for (n <‐ (1 to 8).toList) {

cnt += n
}
print(cnt)

and indeed this is accepted Scala code andproduces the expected result, namely
36, BUT this is imperative style and not permitted in PEP. If you submit this
kind of code, you get 0 marks. The code uses a var and therefore violates the
immutability property I ask for in your code. Sorry!

So how to do that same thing without using a var? Well there are several
ways. One way is to define the following recursive sum‑function:

def sum(xs: List[Int]) : Int =
if (xs.isEmpty) 0 else xs.head + sum(xs.tail)

You can then call sum((1 to 8).toList) and obtain the same result without a
mutable variable andwithout a for‑loop. Obviously for simple things like sum,
you could havewritten xs.sum in the first place. But not all aggregate functions
are pre‑defined and often you have to write your own recursive function for
this.

15

Higher‑Order Functions
Functions obviously play a central role in functional programming. Two simple
examples are

def even(x: Int) : Boolean = x % 2 == 0
def odd(x: Int) : Boolean = x % 2 == 1

More interestingly, the concept of functions is really pushed to the limit in func‑
tional programming. Functions can take other functions as arguments and can
return a function as a result. This is actually quite important for making code
generic. Assume a list of 10 elements:

val lst = (1 to 10).toList

Say, we want to filter out all even numbers. For this we can use

scala> lst.filter(even)
List(2, 4, 6, 8, 10)

where filter expects a function as argument specifying which elements of the
list should be kept and which should be left out. By allowing filter to take a
function as argument, we can also easily filter out odd numbers as well.

scala> lst.filter(odd)
List(1, 3, 5, 7, 9)

Such function arguments are quite frequently used for “generic” functions. For
example it is easy to count odd elements in a list or find the first even number
in a list:

scala> lst.count(odd)
5
scala> lst.find(even)
Some(2)

Recall that the return type of even and odd are booleans. Such function are
sometimes called predicates, because they determine what should be true for
an element and what false, and then performing some operation according to
this boolean. Such predicates are quite useful. Say you want to sort the lst‑list
in ascending and descending order. For this you can write

lst.sortWith(_ < _)
lst.sortWith(_ > _)

where sortWith expects a predicate as argument. The construction _ < _ stands
for a function that takes two arguments and returns true when the first one is
smaller than the second. You can think of this as elegant shorthand notation for

def smaller(x: Int, y: Int) : Boolean = x < y
lst.sortWith(smaller)

Say you want to find in lst the first odd number greater than 2. For this you

16

need to write a function that specifies exactly this condition. To do this you can
use a slight variant of the shorthand notation above

scala> lst.find(n => odd(n) && n > 2)
Some(3)

Here n => ... specifies a function that takes n as argument and uses this argu‑
ment in whatever comes after the double arrow. If you want to use this mech‑
anism for looking for an element that is both even and odd, then of course you
out of luck.

scala> lst.find(n => odd(n) && even(n))
None

While functions taking functions as arguments seems a rather useful fea‑
ture, the utility of returning a function might not be so clear. I admit the fol‑
lowing example is a bit contrived, but believe me sometims functions produce
other functions in a very meaningful way. Say we want to generate functions
according to strings, as in

def mkfn(s: String) : (Int => Boolean) =
if (s == "even") even else odd

With thiswe can generate the required function for filter according to a string:

scala> lst.filter(mkfn("even"))
List(2, 4, 6, 8, 10)
scala> lst.filter(mkfn("foo"))
List(1, 3, 5, 7, 9)

As said, this is example is a bit contrived—I was not able to think of anything
simple, but for example in the Compiler module next year I show a compila‑
tion functions that needs to generate functions as intermediate result. Anyway,
notice the interesting type we had to annotate to mkfn. Types of Scala are de‑
scribed next.

Types
Inmost functional programming languages, types play an important role. Scala
is such a language. You have already seen built‑in types, like Int, Boolean,
String and BigInt, but also user‑defined ones, like Rexp (see coursework). Un‑
fortunately, types can be a thorny subject, especially in Scala. For example, why
do we need to give the type to toSet[Int], but not to toList? The reason is
the power of Scala, which sometimes means it cannot infer all necessary typing
information. At the beginning, while getting familiar with Scala, I recommend
a “play‑it‑by‑ear‑approach” to types. Fully understanding type‑systems, espe‑
cially complicated ones like in Scala, can take a module on their own.7

7Still, such a study can be a rewarding training: If you are in the business of designing new
programming languages, you will not be able to turn a blind eye to types. They essentially help

17

In Scala, types are needed whenever you define an inductive datatype and
also whenever you define functions (their arguments and their results need a
type). Base types are types that do not take any (type)arguments, for exam‑
ple Int and String. Compound types take one or more arguments, which
as seen earlier need to be given in angle‑brackets, for example List[Int] or
Set[List[String]] or Map[Int, Int].

There are a few special type‑constructors that fall outside this pattern. One
is for tuples, where the type is written with parentheses. For example

(Int, Int, String)

is for a triple (a tuple with three components—two integers and a string). Tu‑
ples are helpful if you want to define functions with multiple results, say the
function returning the quotient and remainder of two numbers. For this you
might define:

def quo_rem(m: Int, n: Int) : (Int, Int) =
(m / n, m % n)

Since this function returns a pair of integers, its return type needs to be of type
(Int, Int). Incidentally, this is also the input type of this function. For this
notice quo_rem takes two arguments, namely m and n, both ofwhich are integers.
They are “packaged” in a pair. Consequently the complete type of quo_rem is

(Int, Int) => (Int, Int)

This uses another special type‑constructor, written as the arrow =>. This is
sometimes also called function arrow. For example, the type Int => String is
for a function that takes an integer as input argument and produces a string as
result. A function of this type is for instance

def mk_string(n: Int) : String = n match {
case 0 => "zero"
case 1 => "one"
case 2 => "two"
case _ => "many"

}

It takes an integer as input argument and returns a string. The type of the
function generated in mkfn above, is Int => Boolean.

Unfortunately, unlike other functional programming languages, there is in
Scala no easy way to find out the types of existing functions, except by looking
into the documentation

http://www.scala‐lang.org/api/current/

The function arrow can also be iterated, as in Int => String => Boolean.
This is the type for a function taking an integer as first argument and a string

programmers to avoid common programming errors and help with maintaining code.

18

http://www.scala-lang.org/api/current/

as second, and the result of the function is a boolean. Though silly, a function
of this type would be

def chk_string(n: Int)(s: String) : Boolean =
mk_string(n) == s

which checks whether the integer n corresponds to the name s given by the
function mk_string. Notice the unusual way of specifying the arguments of
this function: the arguments are given one after the other, instead of being in
a pair (what would be the type of this function then?). This way of specifying
the arguments can be useful, for example in situations like this

scala> List("one", "two", "three", "many").map(chk_string(2))
res4 = List(false, true, false, false)

scala> List("one", "two", "three", "many").map(chk_string(3))
res5 = List(false, false, false, true)

In each case we can give to map a specialised version of chk_string—once spe‑
cialised to 2 and once to 3. This kind of “specialising” a function is called partial
application—we have not yet given to this function all arguments it needs, but
only some of them.

Coming back to the type Int => String => Boolean. The rule about such
function types is that the right‑most type specifies what the function returns (a
boolean in this case). The types before that specify how many arguments the
function expects and what their type is (in this case two arguments, one of type
Int and another of type String). Given this rule, what kind of function has
type (Int => String) => Boolean? Well, it returns a boolean. More interest‑
ingly, though, it only takes a single argument (because of the parentheses). The
single argument happens to be another function (taking an integer as input and
returning a string). Remember that mk_string is just such a function. So how
can we use it? For this define the somewhat silly function apply_3:

def apply_3(f: Int => String): Bool = f(3) == "many"

scala> apply_3(mk_string)
res6 = true

You might ask: Apart from silly functions like above, what is the point of
having functions as input arguments to other functions? In Java there is in‑
deed no need of this kind of feature: at least in the past it did not allow such
constructions. I think, the point of Java 8 and successors was to lift this restric‑
tion. But in all functional programming languages, including Scala, it is really
essential to allow functions as input argument. Above you have already seen
map and foreach which need this feature. Consider the functions print and
println, which both print out strings, but the latter adds a line break. You
can call foreachwith either of them and thus changing how, for example, five
numbers are printed.

19

scala> (1 to 5).toList.foreach(print)
12345
scala> (1 to 5).toList.foreach(println)
1
2
3
4
5

This is actually one of the main design principles in functional programming.
You have generic functions like map and foreach that can traverse data contain‑
ers, like lists or sets. They then take a function to specify what should be done
with each element during the traversal. This requires that the generic traversal
functions can cope with any kind of function (not just functions that, for ex‑
ample, take as input an integer and produce a string like above). This means
we cannot fix the type of the generic traversal functions, but have to keep them
polymorphic.8

There is one more type constructor that is rather special. It is called Unit.
Recall that Boolean has two values, namely true and false. This can be used,
for example, to test something and decide whether the test succeeds or not. In
contrast the type Unit has only a single value, written (). This seems like a
completely useless type and return value for a function, but is actually quite
useful. It indicates when the function does not return any result. The purpose
of these functions is to cause something being written on the screen or written
into a file, for example. This is what is called they cause a side‑effect, for example
new content displayed on the screen or some new data in a file. Scala uses
the Unit type to indicate that a function does not have a result, but potentially
causes a side‑effect. Typical examples are the printing functions, like print.

More Info
There is much more to Scala than I can possibly describe in this document and
teach in the lectures. Fortunately there are a number of free books about Scala
and of course lots of help online. For example

• http://www.scala‐lang.org/docu/files/ScalaByExample.pdf

• http://www.scala‐lang.org/docu/files/ScalaTutorial.pdf

• https://www.youtube.com/user/ShadowofCatron

• http://docs.scala‐lang.org/tutorials

• https://www.scala‐exercises.org

• https://twitter.github.io/scala_school
8Another interesting topic about types, but we omit it here for the sake of brevity.

20

http://www.scala-lang.org/docu/files/ScalaByExample.pdf
http://www.scala-lang.org/docu/files/ScalaTutorial.pdf
https://www.youtube.com/user/ShadowofCatron
http://docs.scala-lang.org/tutorials
https://www.scala-exercises.org
https://twitter.github.io/scala_school

Scala Syntax for Java Developers

Scala compiles to the JVM, like the Java language. Because of this, it can re‑use
many libraries. Here are a few hints how some Java code tranlsates to Scala
code:

Variable declaration:
Drink coke = getCoke(); Java

val coke : Drink = getCoke() Scala

or even
val coke = getCoke() Scala

Unit means void:
public void output(String s) { Java

System.out.println(s);
}

def output(s: String): Unit = println(s) Scala

Type for list of Strings:

List<String> Java

List[String] Scala

String interpolations

System.out.println("Hello, "+ first + " "+ last + "!");
Java

println(s"Hello, $first $last!") Scala

Java provides some syntactic sugar when constructing anonymous functions:

list.foreach(item ‐> System.out.println("* " + item));
Java

In Scala, we use the => symbol:

list.foreach(item => println(s"* $item")) Scala

21

There is also an online course at Coursera on Functional Programming Prin‑
ciples in Scala by Martin Odersky, the main developer of the Scala language.
And a document that explains Scala for Java programmers

• http://docs.scala‐lang.org/tutorials/scala‐for‐java‐programmers.html

While I am quite enthusiastic about Scala, I am also happy to admit that it
has more than its fair share of faults. The problem seen earlier of having to give
an explicit type to toSet, but not toList is one of them. There are also many
“deep” ideas about types in Scala, which even to me as seasoned functional
programmer are puzzling. Whilst implicits are great, they can also be a source
of great headaches, for example consider the code:

scala> List (1, 2, 3) contains "your mom"
res1: Boolean = false

Rather than returning false, this code should throw a typing‑error. There are
alsomany limitations Scala inherited from the JVM that can be really annoying.
For example a fixed stack size. One can work around this particular limitation,
but why does one have to? More such ‘puzzles’ can be found at

http://scalapuzzlers.com and http:
//latkin.org/blog/2017/05/02/when‐the‐scala‐compiler‐doesnt‐help/

Even if Scala has been a success in several high‑profile companies, there is
also a company (Yammer) that first used Scala in their production code, but
then moved away from it. Allegedly they did not like the steep learning curve
of Scala and also that new versions of Scala often introduced incompatibilities
in old code. Also the Java language is lately developing at lightening speed (in
comparison to the past) taking on many features of Scala and other languages,
and it seems even it introduces new features on its own.

Scala is deep: After many years, I still continue to learn new technique for
writing more elegant code.

Conclusion
I hope you liked the short journey through the Scala language—but remember
we like you to take on board the functional programming point of view, rather
than just learning another language. There is an interesting blog article about
Scala by a convert:

https://www.skedulo.com/tech‐blog/technology‐scala‐programming/

Hemakes prettymuch the same arguments about functional programming and
immutability (one section is teasingly called “Where Did all the Bugs Go?”). If
you happen to moan about all the idiotic features of Scala, well, I guess this is
part of the package according to this quote:

22

http://docs.scala-lang.org/tutorials/scala-for-java-programmers.html
http://scalapuzzlers.com
http://latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/
http://latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/
https://www.skedulo.com/tech-blog/technology-scala-programming/

There are only two kinds of languages: the ones people complain about
and the ones nobody uses.

—Bjarne Stroustrup (the inventor of C++)

23

