diff -r 6d25ccbb3cf2 -r 84917f2e16cd testing2/knight1.scala --- a/testing2/knight1.scala Tue Dec 05 00:34:14 2017 +0000 +++ b/testing2/knight1.scala Thu Dec 07 12:04:31 2017 +0000 @@ -1,91 +1,133 @@ + // Part 1 about finding and counting Knight's tours //================================================== -object CW7a { +object CW7a extends App{ type Pos = (Int, Int) // a position on a chessboard type Path = List[Pos] // a path...a list of positions -def print_board(dim: Int, path: Path): Unit = { - println - for (i <- 0 until dim) { - for (j <- 0 until dim) { - print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ") - } - println - } -} +//(1a) Complete the function that tests whether the position +// is inside the board and not yet element in the path. + +//def is_legal(dim: Int, path: Path)(x: Pos) : Boolean = ... -def add_pair(x: Pos)(y: Pos): Pos = - (x._1 + y._1, x._2 + y._2) - -def is_legal(dim: Int, path: Path)(x: Pos): Boolean = - 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) - -assert(is_legal(8, Nil)((3,4)) == true) -assert(is_legal(8, List((4,1), (1,0)))((4,1)) == false) -assert(is_legal(2, Nil)((0,0)) == true) +def is_legal(dim: Int, path: Path)(x: Pos) : Boolean = { + +// if ((x._10 || x._2>0)) false else !path.contains(x) + + if (x._1 < 0 || x._2 < 0) false + else if (x._1 < dim && x._2 < dim && !path.contains(x)) true + else false + + +} -def moves(x: Pos): List[Pos] = - List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), - (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)) - -def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = - moves(x).filter(is_legal(dim, path)) - -def count_tours(dim: Int, path: Path): Int = { - if (path.length == dim * dim) 1 - else - (for (x <- legal_moves(dim, path, path.head)) yield count_tours(dim, x::path)).sum -} - -def count_tours(dim: Int, path : Path) : Int = { +def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = { + + val allPossibleMoves = List((x._1+1, x._2+2), (x._1+2, x._2+1), (x._1+2, x._2-1), (x._1+1, x._2-2), (x._1-1, x._2-2), (x._1-2, x._2-1), (x._1-2, x._2+1), (x._1-1, x._2+2)); + + //val finalList = allPossibleMoves.filter((a=>a._1= 0 && a._2 >= 0)); - if (path.length == dim * dim) {1} - else - val x = for (m <- legal_moves(dim,path,path.head)) yield { + val finalList = for(pos<-allPossibleMoves if(is_legal(dim,path)(pos))) yield pos; + + // println("Space in board: " + dim*dim + " for dim: " + dim) + + + finalList.toList; - count_tours(dim,m::path) - } - x.sum } -def enum_tours(dim: Int, path: Path): List[Path] = { - if (path.length == dim * dim) List(path) - else - (for (x <- legal_moves(dim, path, path.head)) yield enum_tours(dim, x::path)).flatten -} +println(legal_moves(8, Nil, (2,2))) +println(legal_moves(8, Nil, (7,7))) +println(legal_moves(8, List((4,1), (1,0)), (2,2))) +println(legal_moves(8, List((6,6)), (7,7))) +println(legal_moves(1, Nil, (0,0))) +println(legal_moves(2, Nil, (0,0))) +println(legal_moves(3, Nil, (0,0))) + +println("=================================================================================") +println("================================Comparision output===============================") +println("=================================================================================") + +println(legal_moves(8, Nil, (2,2)) == List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))) +println(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6))) +println(legal_moves(8, List((4,1), (1,0)), (2,2)) == List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4))) +println(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6))) +println(legal_moves(1, Nil, (0,0)) == Nil) +println(legal_moves(2, Nil, (0,0)) == Nil) +println(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1))) + -def count_all_tours(dim: Int) = { - for (i <- (0 until dim).toList; - j <- (0 until dim).toList) yield count_tours(dim, List((i, j))) +def count_tours(dim: Int, path: Path) : Int = { + + val allMovesFromCurrentPosition = legal_moves(dim, path, path.head); + + if (path.length == dim*dim) 1 else { + + if (allMovesFromCurrentPosition.size == 0 ) 0 else { + + allMovesFromCurrentPosition.map( element => count_tours(dim, element::path)).sum + + + } + + } + } + + -def enum_all_tours(dim: Int): List[Path] = { - (for (i <- (0 until dim).toList; - j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten +println ( count_tours(5, List((0,0))) ) + +def enum_tours(dim: Int, path: Path) : List[Path] = { + + val allMovesFromCurrentPosition = legal_moves(dim, path, path.head); + + if (path.length == dim*dim) List(path) else { + + allMovesFromCurrentPosition.map( element => enum_tours(dim, element::path)).flatten ; + + + } + } + println ( enum_tours(6, List((0,2))).size) } -/* -for (dim <- 1 to 5) { - println(s"${dim} x ${dim} " + count_tours(dim, List((0, 0)))) -} + + + -for (dim <- 1 to 5) { - println(s"${dim} x ${dim} " + count_all_tours(dim)) -} + + +//(1b) Complete the function that calculates for a position +// all legal onward moves that are not already in the path. +// The moves should be ordered in a "clockwise" manner. + +//def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = ... + + + -for (dim <- 1 to 5) { - val ts = enum_tours(dim, List((0, 0))) - println(s"${dim} x ${dim} ") - if (ts != Nil) { - print_board(dim, ts.head) - println(ts.head) - } -} -*/ +//some test cases +// +//assert(legal_moves(8, Nil, (2,2)) == +// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))) +//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6))) +//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == +// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4))) +//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6))) + -} +//(1c) Complete the two recursive functions below. +// They exhaustively search for knight's tours starting from the +// given path. The first function counts all possible tours, +// and the second collects all tours in a list of paths. + +//def count_tours(dim: Int, path: Path) : Int = ... + + +//def enum_tours(dim: Int, path: Path) : List[Path] = ...