diff -r e9d14d58be3c -r daf561a83ba6 main_testing3/re.scala --- a/main_testing3/re.scala Thu Jan 13 12:55:03 2022 +0000 +++ b/main_testing3/re.scala Mon Apr 11 23:55:27 2022 +0100 @@ -13,12 +13,10 @@ case class STAR(r: Rexp) extends Rexp // star -// some convenience for typing regular expressions - //the usual binary choice can be defined in terms of ALTs def ALT(r1: Rexp, r2: Rexp) = ALTs(List(r1, r2)) - +// some convenience for typing in regular expressions import scala.language.implicitConversions import scala.language.reflectiveCalls @@ -52,18 +50,12 @@ def nullable (r: Rexp) : Boolean = r match { case ZERO => false case ONE => true - case CHAR(c) => false - case ALTs(rs) => { - if (rs.size == 0) false - else if (nullable(rs.head)) true - else nullable(ALTs(rs.tail)) - } - case SEQ(c, s) => nullable(c) && nullable(s) - case STAR(r) => true - case _ => false + case CHAR(_) => false + case ALTs(rs) => rs.exists(nullable) + case SEQ(r1, r2) => nullable(r1) && nullable(r2) + case STAR(_) => true } - // (2) Complete the function der according to // the definition given in the coursework; this // function calculates the derivative of a @@ -72,16 +64,12 @@ def der (c: Char, r: Rexp) : Rexp = r match { case ZERO => ZERO case ONE => ZERO - case CHAR(x) => { - if (x==c) ONE - else ZERO - } - case ALTs(rs) => ALTs(for (i <- rs) yield der(c, i)) - case SEQ(x, y) => { - if (nullable(x)) ALTs(List(SEQ(der(c, x), y), der(c, y))) - else SEQ(der(c, x), y) - } - case STAR(x) => SEQ(der(c, x), STAR(x)) + case CHAR(d) => if (c == d) ONE else ZERO + case ALTs(rs) => ALTs(rs.map(der(c, _))) + case SEQ(r1, r2) => + if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) + else SEQ(der(c, r1), r2) + case STAR(r1) => SEQ(der(c, r1), STAR(r1)) } @@ -92,118 +80,119 @@ def flts(rs: List[Rexp]) : List[Rexp] = rs match { case Nil => Nil - case ZERO::rest => flts(rest) - case ALTs(rs_other)::rest => rs_other ::: flts(rest) - case r::rest => r::flts(rest) + case ZERO::tl => flts(tl) + case ALTs(rs1)::rs2 => rs1 ::: flts(rs2) + case r::rs => r :: flts(rs) } // (4) Complete the simp function according to -// the specification given in the coursework description; -// this function simplifies a regular expression from +// the specification given in the coursework; this +// function simplifies a regular expression from // the inside out, like you would simplify arithmetic // expressions; however it does not simplify inside -// STAR-regular expressions. Use the _.distinct and -// flts functions. +// STAR-regular expressions. + def simp(r: Rexp) : Rexp = r match { - case SEQ(x, ZERO) => ZERO - case SEQ(ZERO, x) => ZERO - case SEQ(x, ONE) => x - case SEQ(ONE, x) => x - case SEQ(x, y) => SEQ(simp(x), simp(y)) - case ALTs(rs) => { - val list = flts(for (x <- rs) yield simp(x)).distinct - if (list.size == 0) ZERO - else if (list.size == 1) list.head - else ALTs(list) + case ALTs(rs) => (flts(rs.map(simp)).distinct) match { + case Nil => ZERO + case r::Nil => r + case rs => ALTs(rs) } - case x => x + case SEQ(r1, r2) => (simp(r1), simp(r2)) match { + case (ZERO, _) => ZERO + case (_, ZERO) => ZERO + case (ONE, r2s) => r2s + case (r1s, ONE) => r1s + case (r1s, r2s) => SEQ(r1s, r2s) + } + case r => r } +simp(ALT(ONE | CHAR('a'), CHAR('a') | ONE)) // (5) Complete the two functions below; the first // calculates the derivative w.r.t. a string; the second // is the regular expression matcher taking a regular // expression and a string and checks whether the -// string matches the regular expression +// string matches the regular expression. def ders (s: List[Char], r: Rexp) : Rexp = s match { case Nil => r - case c::rest => { - val deriv = simp(der(c,r)) - ders(rest, deriv) - } + case c::s => ders(s, simp(der(c, r))) } -def matcher(r: Rexp, s: String): Boolean = nullable(ders(s.toList, r)) - +// main matcher function +def matcher(r: Rexp, s: String) = nullable(ders(s.toList, r)) // (6) Complete the size function for regular // expressions according to the specification // given in the coursework. + def size(r: Rexp): Int = r match { - case Nil => 0 case ZERO => 1 case ONE => 1 - case CHAR(x) => 1 - case ALTs(rs) => 1 + (for (x <- rs) yield size(x)).sum - case SEQ(x, y) => 1 + size(x) + size(y) - case STAR(x) => 1 + size(x) + case CHAR(_) => 1 + case ALTs(rs) => 1 + rs.map(size).sum + case SEQ(r1, r2) => 1 + size(r1) + size (r2) + case STAR(r1) => 1 + size(r1) } + // some testing data - -// matcher(("a" ~ "b") ~ "c", "abc") // => true -// matcher(("a" ~ "b") ~ "c", "ab") // => false +//matcher(("a" ~ "b") ~ "c", "abc") // => true +//matcher(("a" ~ "b") ~ "c", "ab") // => false // the supposedly 'evil' regular expression (a*)* b // val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) -// matcher(EVIL, "a" * 1000 ++ "b") // => true -// matcher(EVIL, "a" * 1000) // => false +//println(matcher(EVIL, "a" * 1000 ++ "b")) // => true +//println(matcher(EVIL, "a" * 1000)) // => false // size without simplifications -// size(der('a', der('a', EVIL))) // => 28 -// size(der('a', der('a', der('a', EVIL)))) // => 58 +//println(size(der('a', der('a', EVIL)))) // => 28 +//println(size(der('a', der('a', der('a', EVIL))))) // => 58 // size with simplification -// size(simp(der('a', der('a', EVIL)))) // => 8 -// size(simp(der('a', der('a', der('a', EVIL))))) // => 8 +//println(simp(der('a', der('a', EVIL)))) +//println(simp(der('a', der('a', der('a', EVIL))))) + +//println(size(simp(der('a', der('a', EVIL))))) // => 8 +//println(size(simp(der('a', der('a', der('a', EVIL)))))) // => 8 // Python needs around 30 seconds for matching 28 a's with EVIL. // Java 9 and later increase this to an "astonishing" 40000 a's in -// 30 seconds. +// around 30 seconds. // -// Lets see how long it really takes to match strings with -// 5 Million a's...it should be in the range of a couple -// of seconds. +// Lets see how long it takes to match strings with +// 5 Million a's...it should be in the range of a +// couple of seconds. -// def time_needed[T](i: Int, code: => T) = { -// val start = System.nanoTime() -// for (j <- 1 to i) code -// val end = System.nanoTime() -// "%.5f".format((end - start)/(i * 1.0e9)) -// } +def time_needed[T](i: Int, code: => T) = { + val start = System.nanoTime() + for (j <- 1 to i) code + val end = System.nanoTime() + "%.5f".format((end - start)/(i * 1.0e9)) +} -// for (i <- 0 to 5000000 by 500000) { -// println(s"$i ${time_needed(2, matcher(EVIL, "a" * i))} secs.") -// } +//for (i <- 0 to 5000000 by 500000) { +// println(s"$i ${time_needed(2, matcher(EVIL, "a" * i))} secs.") +//} // another "power" test case -// simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(50).next()) == ONE +//simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(100).next) == ONE // the Iterator produces the rexp // // SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE) // // where SEQ is nested 50 times. + -// This a dummy comment. Hopefully it works! } -