diff -r 0e591f806290 -r 8a34b2ebc8cc testing4/re.scala --- a/testing4/re.scala Tue Dec 03 11:07:09 2019 +0000 +++ b/testing4/re.scala Mon Jan 27 10:18:13 2020 +0000 @@ -8,16 +8,16 @@ case object ZERO extends Rexp case object ONE extends Rexp case class CHAR(c: Char) extends Rexp -case class ALT(r1: Rexp, r2: Rexp) extends Rexp -case class SEQ(r1: Rexp, r2: Rexp) extends Rexp -case class STAR(r: Rexp) extends Rexp +case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative +case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence +case class STAR(r: Rexp) extends Rexp // star -// some convenience for typing in regular expressions + +// some convenience for typing regular expressions import scala.language.implicitConversions import scala.language.reflectiveCalls - def charlist2rexp(s: List[Char]): Rexp = s match { case Nil => ONE case c::Nil => CHAR(c) @@ -39,117 +39,137 @@ def ~ (r: String) = SEQ(s, r) } -// (1) Complete the function nullable according to +// (5) Complete the function nullable according to // the definition given in the coursework; this // function checks whether a regular expression // can match the empty string and Returns a boolean // accordingly. -def nullable (r: Rexp) : Boolean = r match { - case ZERO => false - case ONE => true - case CHAR(_) => false - case ALT(r1, r2) => nullable(r1) || nullable(r2) - case SEQ(r1, r2) => nullable(r1) && nullable(r2) - case STAR(_) => true +def nullable (r: Rexp) : Boolean = { + r match { + case ZERO => false + case ONE => true + case CHAR(c) => false + case ALT(r1, r2) => (nullable(r1) || nullable(r2)) + case SEQ(r1, r2) => (nullable(r1) && nullable(r2)) + case STAR(r) => true + } } -// (2) Complete the function der according to +// (6) Complete the function der according to // the definition given in the coursework; this // function calculates the derivative of a // regular expression w.r.t. a character. -def der (c: Char, r: Rexp) : Rexp = r match { - case ZERO => ZERO - case ONE => ZERO - case CHAR(d) => if (c == d) ONE else ZERO - case ALT(r1, r2) => ALT(der(c, r1), der(c, r2)) - case SEQ(r1, r2) => - if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) - else SEQ(der(c, r1), r2) - case STAR(r1) => SEQ(der(c, r1), STAR(r1)) +def der (c: Char, r: Rexp) : Rexp = { + r match { + case ZERO => ZERO + case ONE => ZERO + case CHAR(d) => if(d == c) ONE else ZERO + case ALT(r1, r2) => ALT(der(c, r1), der(c, r2)) + case SEQ(r1, r2) => if(nullable(r1)) { + (ALT(SEQ(der(c, r1), r2), der(c, r2))) + } else { + SEQ(der(c, r1), r2) + } + case STAR(r) => SEQ(der(c, r), STAR(r)) + } } -// (3) Complete the simp function according to + +// (7) Complete the simp function according to // the specification given in the coursework; this // function simplifies a regular expression from // the inside out, like you would simplify arithmetic // expressions; however it does not simplify inside // STAR-regular expressions. -def simp(r: Rexp) : Rexp = r match { - case ALT(r1, r2) => (simp(r1), simp(r2)) match { - case (ZERO, r2s) => r2s - case (r1s, ZERO) => r1s - case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s) - } - case SEQ(r1, r2) => (simp(r1), simp(r2)) match { - case (ZERO, _) => ZERO - case (_, ZERO) => ZERO - case (ONE, r2s) => r2s - case (r1s, ONE) => r1s - case (r1s, r2s) => SEQ(r1s, r2s) - } - case r => r +def simp(r: Rexp) : Rexp = { + r match { + case STAR(r) => STAR(r) // does not process r star + case SEQ(r1, r2) => { + val x = (simp(r1), simp(r2)) + if(x._1 == ZERO) ZERO else + if(x._2 == ZERO) ZERO else + if(x._1 == ONE) simp(x._2) else + if(x._2 == ONE) simp(x._1) else + if(x._1 == x._2) simp(x._2) else + SEQ(simp(x._1), simp(x._2)) + } + case ALT(r1, r2) => { + val x = (simp(r1), simp(r2)) + if(x._1 == ZERO) simp(x._2) else + if(x._2 == ZERO) simp(x._1) else + if(x._1 == x._2) simp(x._2) else + ALT(simp(x._1), simp(x._2)) + } + case r => r // if single regex, return it + } } -// (4) Complete the two functions below; the first +// (8) Complete the two functions below; the first // calculates the derivative w.r.t. a string; the second // is the regular expression matcher taking a regular // expression and a string and checks whether the -// string matches the regular expression. +// string matches the regular expression -def ders (s: List[Char], r: Rexp) : Rexp = s match { - case Nil => r - case c::s => ders(s, simp(der(c, r))) +def ders (s: List[Char], r: Rexp) : Rexp = { + s match { + case Nil => r + case c :: cs => ders(cs, simp(der(c,r))) + } } -// main matcher function -def matcher(r: Rexp, s: String) = nullable(ders(s.toList, r)) +def matcher(r: Rexp, s: String): Boolean = { + val listOfCharacters = s.toList + val result = ders(listOfCharacters, r) + nullable(result) +} -// (5) Complete the size function for regular + +// (9) Complete the size function for regular // expressions according to the specification // given in the coursework. - -def size(r: Rexp): Int = r match { - case ZERO => 1 - case ONE => 1 - case CHAR(_) => 1 - case ALT(r1, r2) => 1 + size(r1) + size (r2) - case SEQ(r1, r2) => 1 + size(r1) + size (r2) - case STAR(r1) => 1 + size(r1) +def size(r: Rexp): Int = { + r match { + case ZERO => 1 + case ONE => 1 + case CHAR(c) => 1 + case ALT(r1, r2) => 1 + size(r1) + size(r2) + case SEQ(r1, r2) => 1 + size(r1) + size(r2) + case STAR(r) => 1 + size(r) + } } - - // some testing data -//matcher(("a" ~ "b") ~ "c", "abc") // => true -//matcher(("a" ~ "b") ~ "c", "ab") // => false +/* +matcher(("a" ~ "b") ~ "c", "abc") // => true +matcher(("a" ~ "b") ~ "c", "ab") // => false // the supposedly 'evil' regular expression (a*)* b -val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) +// val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) -//matcher(EVIL, "a" * 1000 ++ "b") // => true -//matcher(EVIL, "a" * 1000) // => false +matcher(EVIL, "a" * 1000 ++ "b") // => true +matcher(EVIL, "a" * 1000) // => false // size without simplifications -//size(der('a', der('a', EVIL))) // => 28 -//size(der('a', der('a', der('a', EVIL)))) // => 58 +size(der('a', der('a', EVIL))) // => 28 +size(der('a', der('a', der('a', EVIL)))) // => 58 // size with simplification -//size(simp(der('a', der('a', EVIL)))) // => 8 -//size(simp(der('a', der('a', der('a', EVIL))))) // => 8 +size(simp(der('a', der('a', EVIL)))) // => 8 +size(simp(der('a', der('a', der('a', EVIL))))) // => 8 // Python needs around 30 seconds for matching 28 a's with EVIL. // Java 9 and later increase this to an "astonishing" 40000 a's in -// around 30 seconds. +// 30 seconds. // -// Lets see how long it takes to match strings with -// 5 Million a's...it should be in the range of a -// couple of seconds. +// Lets see how long it really takes to match strings with +// 5 Million a's...it should be in the range of a couple +// of seconds. def time_needed[T](i: Int, code: => T) = { val start = System.nanoTime() @@ -158,19 +178,19 @@ (end - start)/(i * 1.0e9) } -//for (i <- 0 to 5000000 by 500000) { -// println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i))) + " secs.") -//} +for (i <- 0 to 5000000 by 500000) { + println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i)))) +} // another "power" test case -//simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(100).next) == ONE +simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(50).next) == ONE // the Iterator produces the rexp // // SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE) // -// where SEQ is nested 100 times. - +// where SEQ is nested 50 times. +*/ }