diff -r 59779ce322a6 -r ca48ac1d3c3e marking1/drumb.scala --- a/marking1/drumb.scala Sat Jun 22 08:39:52 2019 +0100 +++ b/marking1/drumb.scala Wed Jul 24 14:22:06 2019 +0100 @@ -1,58 +1,89 @@ -// Advanvced Part 3 about a really dumb investment strategy -//========================================================== +// Main Part about a really dumb investment strategy +//====================================================== -//object CW6c { +//object CW6b { // for purposes of generating a jar //two test portfolios val blchip_portfolio = List("GOOG", "AAPL", "MSFT", "IBM", "FB", "AMZN", "BIDU") val rstate_portfolio = List("PLD", "PSA", "AMT", "AIV", "AVB", "BXP", "CCI", - "DLR", "EQIX", "EQR", "ESS", "EXR", "FRT", "GGP", "HCP") - -// (1) The function below should obtain the first trading price -// for a stock symbol by using the query -// -// http://ichart.yahoo.com/table.csv?s=<>&a=0&b=1&c=<>&d=1&e=1&f=<> -// -// and extracting the first January Adjusted Close price in a year. - + "DLR", "EQIX", "EQR", "ESS", "EXR", "FRT", "HCP") import io.Source import scala.util._ +// (1) The function below takes a stock symbol and a year as arguments. +// It should read the corresponding CSV-file and reads the January +// data from the given year. The data should be collected in a list of +// strings for each line in the CSV-file. + def get_january_data(symbol: String, year: Int) : List[String] = - Source.fromFile(symbol ++ ".csv").getLines.toList.filter(_.startsWith(year.toString)) + Source.fromFile(symbol ++ ".csv")("ISO-8859-1").getLines.toList.filter(_.startsWith(year.toString)) + + +//test cases +//blchip_portfolio.map(get_january_data(_, 2018)) +//rstate_portfolio.map(get_january_data(_, 2018)) + +//get_january_data("GOOG", 1980) +//get_january_data("GOOG", 2010) +//get_january_data("FB", 2014) +//get_january_data("PLD", 1980) +//get_january_data("EQIX", 2010) +//get_january_data("ESS", 2014) + + +// (2) From the output of the get_january_data function, the next function +// should extract the first line (if it exists) and the corresponding +// first trading price in that year with type Option[Double]. If no line +// is generated by get_january_data then the result is None; Some if +// there is a price. def get_first_price(symbol: String, year: Int) : Option[Double] = { val data = Try(Some(get_january_data(symbol, year).head)) getOrElse None data.map(_.split(",").toList(1).toDouble) } -get_first_price("GOOG", 1980) -get_first_price("GOOG", 2010) -get_first_price("FB", 2014) +//test cases +//get_first_price("GOOG", 1980) +//get_first_price("GOOG", 2010) +//get_first_price("FB", 2014) + +/* +for (i <- 1978 to 2018) { + println(blchip_portfolio.map(get_first_price(_, i))) +} + +for (i <- 1978 to 2018) { + println(rstate_portfolio.map(get_first_price(_, i))) +} +*/ -// Complete the function below that obtains all first prices -// for the stock symbols from a portfolio for the given -// range of years +// (3) Complete the function below that obtains all first prices +// for the stock symbols from a portfolio (list of strings) and +// for the given range of years. The inner lists are for the +// stock symbols and the outer list for the years. def get_prices(portfolio: List[String], years: Range): List[List[Option[Double]]] = for (year <- years.toList) yield for (symbol <- portfolio) yield get_first_price(symbol, year) -// test case -val p_fb = get_prices(List("FB"), 2012 to 2014) -val p = get_prices(List("GOOG", "AAPL"), 2010 to 2012) +//test cases + +//println("Task 3 data from Google and Apple in 2010 to 2012") +//val goog_aapl_prices = get_prices(List("GOOG", "AAPL"), 2010 to 2012) +//println(goog_aapl_prices.toString ++ "\n") -val tt = get_prices(List("BIDU"), 2004 to 2008) +//val p_fb = get_prices(List("FB"), 2012 to 2014) +//val tt = get_prices(List("BIDU"), 2004 to 2008) -// (2) The first function below calculates the change factor (delta) between -// a price in year n and a price in year n+1. The second function calculates -// all change factors for all prices (from a portfolio). + +// (4) The function below calculates the change factor (delta) between +// a price in year n and a price in year n + 1. def get_delta(price_old: Option[Double], price_new: Option[Double]) : Option[Double] = { (price_old, price_new) match { @@ -61,25 +92,32 @@ } } + +// (5) The next function calculates all change factors for all prices (from a +// portfolio). The input to this function are the nested lists created by +// get_prices above. + def get_deltas(data: List[List[Option[Double]]]): List[List[Option[Double]]] = for (i <- (0 until (data.length - 1)).toList) yield for (j <- (0 until (data(0).length)).toList) yield get_delta(data(i)(j), data(i + 1)(j)) + // test case using the prices calculated above -val d = get_deltas(p) -val ttd = get_deltas(tt) -// (3) Write a function that given change factors, a starting balance and a year -// calculates the yearly yield, i.e. new balanace, according to our dump investment -// strategy. Another function calculates given the same data calculates the -// compound yield up to a given year. Finally a function combines all -// calculations by taking a portfolio, a range of years and a start balance -// as arguments. +//println("Task 5 change prices from Google and Apple in 2010 and 2011") +//val goog_aapl_deltas = get_deltas(goog_aapl_prices) +//println(goog_aapl_deltas.toString ++ "\n") + +//val ttd = get_deltas(tt) -def yearly_yield(data: List[List[Option[Double]]], balance: Long, year: Int): Long = { - val somes = data(year).flatten +// (6) Write a function that given change factors, a starting balance and an index, +// calculates the yearly yield, i.e. new balance, according to our dumb investment +// strategy. Index points to a year in the data list. + +def yearly_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = { + val somes = data(index).flatten val somes_length = somes.length if (somes_length == 0) balance else { @@ -88,64 +126,48 @@ } } -def compound_yield(data: List[List[Option[Double]]], balance: Long, year: Int): Long = { - if (year >= data.length) balance else { - val new_balance = yearly_yield(data, balance, year) - compound_yield(data, new_balance, year + 1) +// test case using the deltas calculated above +//println("Task 6 yield from Google and Apple in 2010 with balance 100") + +//val d0 = goog_aapl_deltas(0)(0) +//val d1 = goog_aapl_deltas(0)(1) +//println(s"50 * ${d0.get} + 50 * ${d1.get} = ${50.toDouble * d0.get + 50.toDouble * d1.get}") + + +//val goog_aapl_yield = yearly_yield(goog_aapl_deltas, 100, 0) +//println("Rounded yield: " ++ goog_aapl_yield.toString ++ "\n") + + +//yearly_yield(get_prices(rstate_portfolio, 2016 to 2018), 100, 2) +//get_prices(rstate_portfolio, 2016 to 2018)(2).flatten.sum + + +// (7) Write a function compound_yield that calculates the overall balance for a +// range of years where in each year the yearly profit is compounded to the new +// balances and then re-invested into our portfolio. For this use the function and +// results generated under (6). The function investment calls compound_yield +// with the appropriate deltas and the first index. + + +def compound_yield(data: List[List[Option[Double]]], balance: Long, index: Int): Long = { + if (index >= data.length) balance else { + val new_balance = yearly_yield(data, balance, index) + compound_yield(data, new_balance, index + 1) } } -//yearly_yield(d, 100, 0) -//compound_yield(d.take(6), 100, 0) - -//test case -//yearly_yield(d, 100, 0) -//yearly_yield(d, 225, 1) -//yearly_yield(d, 246, 2) -//yearly_yield(d, 466, 3) -//yearly_yield(d, 218, 4) - -//yearly_yield(d, 100, 0) -//yearly_yield(d, 125, 1) - def investment(portfolio: List[String], years: Range, start_balance: Long): Long = { compound_yield(get_deltas(get_prices(portfolio, years)), start_balance, 0) } -/* -val q1 = get_deltas(get_prices(List("GOOG", "AAPL", "BIDU"), 2000 to 2017)) -yearly_yield(q1, 100, 0) -yearly_yield(q1, 100, 1) -yearly_yield(q1, 100, 2) -yearly_yield(q1, 100, 3) -yearly_yield(q1, 100, 4) -yearly_yield(q1, 100, 5) -yearly_yield(q1, 100, 6) -investment(List("GOOG", "AAPL", "BIDU"), 2004 to 2017, 100) -val one = get_deltas(get_prices(rstate_portfolio, 1978 to 1984)) -val two = get_deltas(get_prices(blchip_portfolio, 1978 to 1984)) - -val one_full = get_deltas(get_prices(rstate_portfolio, 1978 to 2017)) -val two_full = get_deltas(get_prices(blchip_portfolio, 1978 to 2017)) - -one_full.map(_.flatten).map(_.sum).sum -two_full.map(_.flatten).map(_.sum).sum //test cases for the two portfolios given above -//println("Real data: " + investment(rstate_portfolio, 1978 to 2017, 100)) -//println("Blue data: " + investment(blchip_portfolio, 1978 to 2017, 100)) +//println("Real data: " + investment(rstate_portfolio, 1978 to 2019, 100)) +//println("Blue data: " + investment(blchip_portfolio, 1978 to 2019, 100)) -for (i <- 2000 to 2017) { - println("Year " + i) - //println("Real data: " + investment(rstate_portfolio, 1978 to i, 100)) - //println("Blue data: " + investment(blchip_portfolio, 1978 to i, 100)) - println("test: " + investment(List("GOOG", "AAPL", "BIDU"), 2000 to i, 100)) -} +//} -*/ -//1984 -//1992 -//} +