diff -r 0e60e6c24b99 -r 9f8751912560 progs/knight3_sol.scala --- a/progs/knight3_sol.scala Wed Nov 16 15:05:40 2016 +0000 +++ b/progs/knight3_sol.scala Wed Nov 16 23:34:05 2016 +0000 @@ -1,24 +1,65 @@ // Part 3 about finding a single tour using the Warnsdorf Rule //============================================================= -// copy any function you need from files knight1.scala and -// knight2.scala + +type Pos = (Int, Int) +type Path = List[Pos] + +def print_board(dim: Int, path: Path): Unit = { + println + for (i <- 0 until dim) { + for (j <- 0 until dim) { + print(f"${path.reverse.indexOf((i, j))}%3.0f ") + } + println + } +} -type Pos = (Int, Int) // a position on a chessboard -type Path = List[Pos] // a path...a list of positions +def add_pair(x: Pos)(y: Pos): Pos = + (x._1 + y._1, x._2 + y._2) + +def is_legal(dim: Int, path: Path)(x: Pos): Boolean = + 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) -//(3a) Complete the function that calculates a list of onward -// moves like in (1b) but orders them according to the Warnsdorf’s -// rule. That means moves with the fewest legal onward moves -// should come first. +def moves(x: Pos): List[Pos] = + List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), + (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)) + +def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = + moves(x).filter(is_legal(dim, path)) + +def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = + legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length) + -def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = .. +def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match { + case Nil => None + case x::xs => { + val result = f(x) + if (result.isDefined) result else first(xs, f) + } +} -//(3b) Complete the function that searches for a single *closed* -// tour using the ordered moves function. + +def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = { + if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path) + else + first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path)) +} -def first_closed_tour_heuristic(dim: Int, path: Path): Option[Path] = ... +for (dim <- 1 to 6) { + val t = first_closed_tour_heuristics(dim, List((dim / 2, dim / 2))) + println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) +} + -//(3c) Sama as (3b) but searches for *open* tours. +def first_tour_heuristics(dim: Int, path: Path): Option[Path] = { + if (path.length == dim * dim) Some(path) + else + first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path)) +} -def first_tour_heuristic(dim: Int, path: Path): Option[Path] = ... +for (dim <- 1 to 50) { + val t = first_tour_heuristics(dim, List((dim / 2, dim / 2))) + println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) +}