diff -r 19b75e899d37 -r 9c03b5e89a2a marking4/re.scala --- a/marking4/re.scala Fri Apr 26 17:29:30 2024 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,176 +0,0 @@ -// Core Part about Regular Expression Matching -//============================================= - -object CW9c { - -// Regular Expressions -abstract class Rexp -case object ZERO extends Rexp -case object ONE extends Rexp -case class CHAR(c: Char) extends Rexp -case class ALT(r1: Rexp, r2: Rexp) extends Rexp -case class SEQ(r1: Rexp, r2: Rexp) extends Rexp -case class STAR(r: Rexp) extends Rexp - -// some convenience for typing in regular expressions - -import scala.language.implicitConversions -import scala.language.reflectiveCalls - - -def charlist2rexp(s: List[Char]): Rexp = s match { - case Nil => ONE - case c::Nil => CHAR(c) - case c::s => SEQ(CHAR(c), charlist2rexp(s)) -} -implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList) - -implicit def RexpOps (r: Rexp) = new { - def | (s: Rexp) = ALT(r, s) - def % = STAR(r) - def ~ (s: Rexp) = SEQ(r, s) -} - -implicit def stringOps (s: String) = new { - def | (r: Rexp) = ALT(s, r) - def | (r: String) = ALT(s, r) - def % = STAR(s) - def ~ (r: Rexp) = SEQ(s, r) - def ~ (r: String) = SEQ(s, r) -} - -// (1) Complete the function nullable according to -// the definition given in the coursework; this -// function checks whether a regular expression -// can match the empty string and Returns a boolean -// accordingly. - -def nullable (r: Rexp) : Boolean = r match { - case ZERO => false - case ONE => true - case CHAR(_) => false - case ALT(r1, r2) => nullable(r1) || nullable(r2) - case SEQ(r1, r2) => nullable(r1) && nullable(r2) - case STAR(_) => true -} - -// (2) Complete the function der according to -// the definition given in the coursework; this -// function calculates the derivative of a -// regular expression w.r.t. a character. - -def der (c: Char, r: Rexp) : Rexp = r match { - case ZERO => ZERO - case ONE => ZERO - case CHAR(d) => if (c == d) ONE else ZERO - case ALT(r1, r2) => ALT(der(c, r1), der(c, r2)) - case SEQ(r1, r2) => - if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) - else SEQ(der(c, r1), r2) - case STAR(r1) => SEQ(der(c, r1), STAR(r1)) -} - -// (3) Complete the simp function according to -// the specification given in the coursework; this -// function simplifies a regular expression from -// the inside out, like you would simplify arithmetic -// expressions; however it does not simplify inside -// STAR-regular expressions. - -def simp(r: Rexp) : Rexp = r match { - case ALT(r1, r2) => (simp(r1), simp(r2)) match { - case (ZERO, r2s) => r2s - case (r1s, ZERO) => r1s - case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s) - } - case SEQ(r1, r2) => (simp(r1), simp(r2)) match { - case (ZERO, _) => ZERO - case (_, ZERO) => ZERO - case (ONE, r2s) => r2s - case (r1s, ONE) => r1s - case (r1s, r2s) => SEQ(r1s, r2s) - } - case r => r -} - - -// (4) Complete the two functions below; the first -// calculates the derivative w.r.t. a string; the second -// is the regular expression matcher taking a regular -// expression and a string and checks whether the -// string matches the regular expression. - -def ders (s: List[Char], r: Rexp) : Rexp = s match { - case Nil => r - case c::s => ders(s, simp(der(c, r))) -} - -// main matcher function -def matcher(r: Rexp, s: String) = nullable(ders(s.toList, r)) - -// (5) Complete the size function for regular -// expressions according to the specification -// given in the coursework. - - -def size(r: Rexp): Int = r match { - case ZERO => 1 - case ONE => 1 - case CHAR(_) => 1 - case ALT(r1, r2) => 1 + size(r1) + size (r2) - case SEQ(r1, r2) => 1 + size(r1) + size (r2) - case STAR(r1) => 1 + size(r1) -} - - - -// some testing data - -//matcher(("a" ~ "b") ~ "c", "abc") // => true -//matcher(("a" ~ "b") ~ "c", "ab") // => false - -// the supposedly 'evil' regular expression (a*)* b -val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) - -//matcher(EVIL, "a" * 1000 ++ "b") // => true -//matcher(EVIL, "a" * 1000) // => false - -// size without simplifications -//size(der('a', der('a', EVIL))) // => 28 -//size(der('a', der('a', der('a', EVIL)))) // => 58 - -// size with simplification -//size(simp(der('a', der('a', EVIL)))) // => 8 -//size(simp(der('a', der('a', der('a', EVIL))))) // => 8 - -// Python needs around 30 seconds for matching 28 a's with EVIL. -// Java 9 and later increase this to an "astonishing" 40000 a's in -// around 30 seconds. -// -// Lets see how long it takes to match strings with -// 5 Million a's...it should be in the range of a -// couple of seconds. - -def time_needed[T](i: Int, code: => T) = { - val start = System.nanoTime() - for (j <- 1 to i) code - val end = System.nanoTime() - (end - start)/(i * 1.0e9) -} - -//for (i <- 0 to 5000000 by 500000) { -// println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i))) + " secs.") -//} - -// another "power" test case -//simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(100).next) == ONE - -// the Iterator produces the rexp -// -// SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE) -// -// where SEQ is nested 100 times. - - - -}