diff -r 19b75e899d37 -r 9c03b5e89a2a assignment2021scala/main4/knight1.scala --- a/assignment2021scala/main4/knight1.scala Fri Apr 26 17:29:30 2024 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,109 +0,0 @@ -// Main Part 4 about finding Knight's tours -//========================================== - - -object M4a { - -// If you need any auxiliary functions, feel free to -// implement them, but do not make any changes to the -// templates below. Also have a look whether the functions -// at the end of the file are of any help. - - - -type Pos = (Int, Int) // a position on a chessboard -type Path = List[Pos] // a path...a list of positions - -//(1) Complete the function that tests whether the position x -// is inside the board and not yet element in the path. - -def is_legal(dim: Int, path: Path, x: Pos) : Boolean = ??? - - - -//(2) Complete the function that calculates for a position x -// all legal onward moves that are not already in the path. -// The moves should be ordered in a "clockwise" manner. - -def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = ??? - - -//some testcases -// -//assert(legal_moves(8, Nil, (2,2)) == -// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))) -//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6))) -//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == -// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4))) -//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6))) - - -//(3) Complete the two recursive functions below. -// They exhaustively search for knight's tours starting from the -// given path. The first function counts all possible tours, -// and the second collects all tours in a list of paths. - -def count_tours(dim: Int, path: Path) : Int = ??? - -def enum_tours(dim: Int, path: Path) : List[Path] = ??? - - -//(4) Implement a first-function that finds the first -// element, say x, in the list xs where f is not None. -// In that case Return f(x), otherwise None. If possible, -// calculate f(x) only once. - -def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = ??? - - -// testcases -// -//def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None -// -//first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo) // Some(List((4,0))) -//first(List((1, 0),(2, 0),(3, 0)), foo) // None - - -//(5) Implement a function that uses the first-function from (4) for -// trying out onward moves, and searches recursively for a -// knight tour on a dim * dim-board. - -def first_tour(dim: Int, path: Path) : Option[Path] = ??? - - - -/* Helper functions - - -// for measuring time -def time_needed[T](code: => T) : T = { - val start = System.nanoTime() - val result = code - val end = System.nanoTime() - println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.") - result -} - -// can be called for example with -// -// time_needed(count_tours(dim, List((0, 0)))) -// -// in order to print out the time that is needed for -// running count_tours - - -// for printing a board -def print_board(dim: Int, path: Path): Unit = { - println() - for (i <- 0 until dim) { - for (j <- 0 until dim) { - print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ") - } - println() - } -} - - -*/ - -}