diff -r e48ea8300b2d -r 9471c3b7ea02 pre_solution3/postfix2.scala --- a/pre_solution3/postfix2.scala Mon Nov 08 00:17:50 2021 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,100 +0,0 @@ -// Shunting Yard Algorithm -// including Associativity for Operators -// ===================================== - -object CW8b { - -// type of tokens -type Toks = List[String] - -// helper function for splitting strings into tokens -def split(s: String) : Toks = s.split(" ").toList - -// left- and right-associativity -abstract class Assoc -case object LA extends Assoc -case object RA extends Assoc - -// power is right-associative, -// everything else is left-associative -def assoc(s: String) : Assoc = s match { - case "^" => RA - case _ => LA -} - -// the precedences of the operators -val precs = Map("+" -> 1, - "-" -> 1, - "*" -> 2, - "/" -> 2, - "^" -> 4) - -// the operations in the basic version of the algorithm -val ops = List("+", "-", "*", "/", "^") - -// (8) Implement the extended version of the shunting yard algorithm. -// This version should properly account for the fact that the power -// operation is right-associative. Apart from the extension to include -// the power operation, you can make the same assumptions as in -// basic version. - -def is_op(op: String) : Boolean = ops.contains(op) - -def prec(op1: String, op2: String) : Boolean = assoc(op1) match { - case LA => precs(op1) <= precs(op2) - case RA => precs(op1) < precs(op2) -} - -def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = (toks, st, out) match { - case (Nil, _, _) => out.reverse ::: st - case (num::in, st, out) if (num.forall(_.isDigit)) => - syard(in, st, num :: out) - case (op1::in, op2::st, out) if (is_op(op1) && is_op(op2) && prec(op1, op2)) => - syard(op1::in, st, op2 :: out) - case (op1::in, st, out) if (is_op(op1)) => syard(in, op1::st, out) - case ("("::in, st, out) => syard(in, "("::st, out) - case (")"::in, op2::st, out) => - if (op2 == "(") syard(in, st, out) else syard(")"::in, st, op2 :: out) - case (in, st, out) => { - println(s"in: ${in} st: ${st} out: ${out.reverse}") - Nil - } -} - -def op_comp(s: String, n1: Int, n2: Int) = s match { - case "+" => n2 + n1 - case "-" => n2 - n1 - case "*" => n2 * n1 - case "/" => n2 / n1 - case "^" => BigInt(n2).pow(n1).toInt -} - -def compute(toks: Toks, st: List[Int] = Nil) : Int = (toks, st) match { - case (Nil, st) => st.head - case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st) - case (num::in, st) => compute(in, num.toInt::st) -} - - - - -//compute(syard(split("3 + 4 * ( 2 - 1 )"))) // 7 -//compute(syard(split("10 + 12 * 33"))) // 406 -//compute(syard(split("( 5 + 7 ) * 2"))) // 24 -//compute(syard(split("5 + 7 / 2"))) // 8 -//compute(syard(split("5 * 7 / 2"))) // 17 -//compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15 - -//compute(syard(split("4 ^ 3 ^ 2"))) // 262144 -//compute(syard(split("4 ^ ( 3 ^ 2 )"))) // 262144 -//compute(syard(split("( 4 ^ 3 ) ^ 2"))) // 4096 -//compute(syard(split("( 3 + 1 ) ^ 2 ^ 3"))) // 65536 - -//syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3")) // 3 4 8 * 5 1 - 2 3 ^ ^ / + -//compute(syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))) // 3 - -//compute(syard(split("( 3 + 1 ) ^ 2 ^ 3"))) // 65536 - - - -}