diff -r ca5884c2e3bd -r 8da9e0c16194 progs/re.scala --- a/progs/re.scala Thu Nov 24 01:44:38 2016 +0000 +++ b/progs/re.scala Thu Nov 24 09:42:49 2016 +0000 @@ -1,68 +1,92 @@ +// Part 1 about Regular Expression Matching +//========================================== abstract class Rexp case object ZERO extends Rexp case object ONE extends Rexp case class CHAR(c: Char) extends Rexp -case class ALT(r1: Rexp, r2: Rexp) extends Rexp -case class SEQ(r1: Rexp, r2: Rexp) extends Rexp -case class STAR(r: Rexp) extends Rexp +case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative +case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence +case class STAR(r: Rexp) extends Rexp // star + + +// some convenience for typing in regular expressions + +import scala.language.implicitConversions +import scala.language.reflectiveCalls -// nullable function: tests whether the regular -// expression can recognise the empty string -def nullable (r: Rexp) : Boolean = r match { - case ZERO => false - case ONE => true - case CHAR(_) => false - case ALT(r1, r2) => nullable(r1) || nullable(r2) - case SEQ(r1, r2) => nullable(r1) && nullable(r2) - case STAR(_) => true +def charlist2rexp(s: List[Char]): Rexp = s match { + case Nil => ONE + case c::Nil => CHAR(c) + case c::s => SEQ(CHAR(c), charlist2rexp(s)) +} +implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList) + +implicit def RexpOps (r: Rexp) = new { + def | (s: Rexp) = ALT(r, s) + def % = STAR(r) + def ~ (s: Rexp) = SEQ(r, s) } -// derivative of a regular expression w.r.t. a character -def der (c: Char, r: Rexp) : Rexp = r match { - case ZERO => ZERO - case ONE => ZERO - case CHAR(d) => if (c == d) ONE else ZERO - case ALT(r1, r2) => ALT(der(c, r1), der(c, r2)) - case SEQ(r1, r2) => - if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) - else SEQ(der(c, r1), r2) - case STAR(r1) => SEQ(der(c, r1), STAR(r1)) +implicit def stringOps (s: String) = new { + def | (r: Rexp) = ALT(s, r) + def | (r: String) = ALT(s, r) + def % = STAR(s) + def ~ (r: Rexp) = SEQ(s, r) + def ~ (r: String) = SEQ(s, r) } -def simp(r: Rexp) : Rexp = r match { - case ALT(r1, r2) => (simp(r1), simp(r2)) match { - case (ZERO, r2s) => r2s - case (r1s, ZERO) => r1s - case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s) - } - case SEQ(r1, r2) => (simp(r1), simp(r2)) match { - case (ZERO, _) => ZERO - case (_, ZERO) => ZERO - case (ONE, r2s) => r2s - case (r1s, ONE) => r1s - case (r1s, r2s) => SEQ(r1s, r2s) - } - case r => r -} +// (1a) Complete the function nullable according to +// the definition given in the coursework; this +// function checks whether a regular expression +// can match the empty string + +def nullable (r: Rexp) : Boolean = ... -// derivative w.r.t. a string (iterates der) -def ders (s: List[Char], r: Rexp) : Rexp = s match { - case Nil => r - case c::s => ders(s, simp(der(c, r))) -} +// (1b) Complete the function der according to +// the definition given in the coursework; this +// function calculates the derivative of a +// regular expression w.r.t. a character + +def der (c: Char, r: Rexp) : Rexp = ... + +// (1c) Complete the function der according to +// the specification given in the coursework; this +// function simplifies a regular expression; +// however it does not simplify inside STAR-regular +// expressions + +def simp(r: Rexp) : Rexp = ... + +// (1d) Complete the two functions below; the first +// calculates the derivative w.r.t. a string; the second +// is the regular expression matcher taking a regular +// expression and a string and checks whether the +// string matches the regular expression + +def ders (s: List[Char], r: Rexp) : Rexp = ... + +def matcher(r: Rexp, s: String): Boolean = ... -// main matcher function -def matcher(r: Rexp, s: String) : Boolean = nullable(ders(s.toList, r)) +// (1e) Complete the function below: it searches (from the left to +// right) in string s1 all the non-empty substrings that match the +// regular expression -- these substrings are assumed to be +// the longest substrings matched by the regular expression and +// assumed to be non-overlapping. All these substrings in s1 are replaced +// by s2. + +def replace(r: Rexp, s1: String, s2: String): String = ... -//one or zero -def OPT(r: Rexp) = ALT(r, ONE) + -//evil regular expressions -def EVIL1(n: Int) = SEQ(NTIMES(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n)) -val EVIL2 = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) +// some testing data +// the supposedly 'evil' regular expression (a*)* b +/* +val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) +println(matcher(EVIL, "a" * 1000 ++ "b")) +println(matcher(EVIL, "a" * 1000)) def time_needed[T](i: Int, code: => T) = { @@ -72,22 +96,9 @@ (end - start)/(i * 1.0e9) } - -//test: (a?{n}) (a{n}) -for (i <- 1 to 8001 by 1000) { - println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL1(i), "a" * i)))) +for (i <- 1 to 5000001 by 500000) { + println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i)))) } - -for (i <- 1 to 8001 by 1000) { - println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL1(i), "a" * i)))) -} +*/ -//test: (a*)* b -for (i <- 1 to 7000001 by 500000) { - println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL2, "a" * i)))) -} -for (i <- 1 to 7000001 by 500000) { - println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL2, "a" * i)))) -} -