diff -r de701b64a4e0 -r 6af86ba1208f main_testing3/re.scala --- a/main_testing3/re.scala Thu Nov 03 11:30:09 2022 +0000 +++ b/main_testing3/re.scala Tue Nov 08 00:27:47 2022 +0000 @@ -1,5 +1,5 @@ // Main Part 3 about Regular Expression Matching -//============================================= +//============================================== object M3 { @@ -8,13 +8,15 @@ case object ZERO extends Rexp case object ONE extends Rexp case class CHAR(c: Char) extends Rexp -case class ALTs(rs: List[Rexp]) extends Rexp // alternatives -case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence -case class STAR(r: Rexp) extends Rexp // star +case class ALTs(rs: List[Rexp]) extends Rexp // alternatives +case class SEQs(rs: List[Rexp]) extends Rexp // sequences +case class STAR(r: Rexp) extends Rexp // star -//the usual binary choice can be defined in terms of ALTs +//the usual binary choice and binary sequence can be defined +//in terms of ALTs and SEQs def ALT(r1: Rexp, r2: Rexp) = ALTs(List(r1, r2)) +def SEQ(r1: Rexp, r2: Rexp) = SEQs(List(r1, r2)) // some convenience for typing in regular expressions import scala.language.implicitConversions @@ -41,83 +43,78 @@ def ~ (r: String) = SEQ(s, r) } -// (1) Complete the function nullable according to -// the definition given in the coursework; this -// function checks whether a regular expression -// can match the empty string and Returns a boolean -// accordingly. - +// (1) def nullable (r: Rexp) : Boolean = r match { case ZERO => false case ONE => true case CHAR(_) => false case ALTs(rs) => rs.exists(nullable) - case SEQ(r1, r2) => nullable(r1) && nullable(r2) + case SEQs(rs) => rs.forall(nullable) case STAR(_) => true } -// (2) Complete the function der according to -// the definition given in the coursework; this -// function calculates the derivative of a -// regular expression w.r.t. a character. - -def der (c: Char, r: Rexp) : Rexp = r match { +// (2) +def der(c: Char, r: Rexp) : Rexp = r match { case ZERO => ZERO case ONE => ZERO case CHAR(d) => if (c == d) ONE else ZERO case ALTs(rs) => ALTs(rs.map(der(c, _))) - case SEQ(r1, r2) => - if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) - else SEQ(der(c, r1), r2) + case SEQs(Nil) => ZERO + case SEQs(r1::rs) => + if (nullable(r1)) ALT(SEQs(der(c, r1)::rs), der(c, SEQs(rs))) + else SEQs(der(c, r1):: rs) case STAR(r1) => SEQ(der(c, r1), STAR(r1)) } -// (3) Implement the flatten function flts. It -// deletes 0s from a list of regular expressions -// and also 'spills out', or flattens, nested -// ALTernativeS. +// (3) +def denest(rs: List[Rexp]) : List[Rexp] = rs match { + case Nil => Nil + case ZERO::tl => denest(tl) + case ALTs(rs1)::rs2 => rs1 ::: denest(rs2) + case r::rs => r :: denest(rs) +} -def flts(rs: List[Rexp]) : List[Rexp] = rs match { - case Nil => Nil - case ZERO::tl => flts(tl) - case ALTs(rs1)::rs2 => rs1 ::: flts(rs2) - case r::rs => r :: flts(rs) +// (4) +def flts(rs: List[Rexp], acc: List[Rexp] = Nil) : List[Rexp] = rs match { + case Nil => acc + case ZERO::rs => ZERO::Nil + case ONE::rs => flts(rs, acc) + case SEQs(rs1)::rs => flts(rs, acc ::: rs1) + case r::rs => flts(rs, acc :+ r) } - +// (5) +def ALTs_smart(rs: List[Rexp]) : Rexp = rs match { + case Nil => ZERO + case r::Nil => r + case rs => ALTs(rs) +} -// (4) Complete the simp function according to -// the specification given in the coursework; this -// function simplifies a regular expression from -// the inside out, like you would simplify arithmetic -// expressions; however it does not simplify inside -// STAR-regular expressions. +def SEQs_smart(rs: List[Rexp]) : Rexp = rs match { + case Nil => ONE + case ZERO::nil => ZERO + case r::Nil => r + case rs => SEQs(rs) +} +// (6) def simp(r: Rexp) : Rexp = r match { - case ALTs(rs) => (flts(rs.map(simp)).distinct) match { - case Nil => ZERO - case r::Nil => r - case rs => ALTs(rs) - } - case SEQ(r1, r2) => (simp(r1), simp(r2)) match { - case (ZERO, _) => ZERO - case (_, ZERO) => ZERO - case (ONE, r2s) => r2s - case (r1s, ONE) => r1s - case (r1s, r2s) => SEQ(r1s, r2s) - } + case ALTs(rs) => + ALTs_smart(denest(rs.map(simp)).distinct) + case SEQs(rs) => + SEQs_smart(flts(rs.map(simp))) case r => r } -simp(ALT(ONE | CHAR('a'), CHAR('a') | ONE)) +//println("Simp tests") +//println(simp(ALT(ONE | CHAR('a'), CHAR('a') | ONE))) +//println(simp(((CHAR('a') | ZERO) ~ ONE) | +// (((ONE | CHAR('b')) | CHAR('c')) ~ (CHAR('d') ~ ZERO)))) -// (5) Complete the two functions below; the first -// calculates the derivative w.r.t. a string; the second -// is the regular expression matcher taking a regular -// expression and a string and checks whether the -// string matches the regular expression. + +// (7) def ders (s: List[Char], r: Rexp) : Rexp = s match { case Nil => r @@ -127,43 +124,40 @@ // main matcher function def matcher(r: Rexp, s: String) = nullable(ders(s.toList, r)) -// (6) Complete the size function for regular -// expressions according to the specification -// given in the coursework. - +// (8) def size(r: Rexp): Int = r match { case ZERO => 1 case ONE => 1 case CHAR(_) => 1 case ALTs(rs) => 1 + rs.map(size).sum - case SEQ(r1, r2) => 1 + size(r1) + size (r2) + case SEQs(rs) => 1 + rs.map(size).sum case STAR(r1) => 1 + size(r1) } // some testing data - -//matcher(("a" ~ "b") ~ "c", "abc") // => true -//matcher(("a" ~ "b") ~ "c", "ab") // => false +/* +println(matcher(("a" ~ "b") ~ "c", "abc")) // => true +println(matcher(("a" ~ "b") ~ "c", "ab")) // => false // the supposedly 'evil' regular expression (a*)* b -// val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) +val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) -//println(matcher(EVIL, "a" * 1000 ++ "b")) // => true -//println(matcher(EVIL, "a" * 1000)) // => false +println(matcher(EVIL, "a" * 1000 ++ "b")) // => true +println(matcher(EVIL, "a" * 1000)) // => false // size without simplifications -//println(size(der('a', der('a', EVIL)))) // => 28 -//println(size(der('a', der('a', der('a', EVIL))))) // => 58 +println(size(der('a', der('a', EVIL)))) // => 36 +println(size(der('a', der('a', der('a', EVIL))))) // => 83 // size with simplification -//println(simp(der('a', der('a', EVIL)))) -//println(simp(der('a', der('a', der('a', EVIL))))) +println(simp(der('a', der('a', EVIL)))) +println(simp(der('a', der('a', der('a', EVIL))))) -//println(size(simp(der('a', der('a', EVIL))))) // => 8 -//println(size(simp(der('a', der('a', der('a', EVIL)))))) // => 8 +println(size(simp(der('a', der('a', EVIL))))) // => 7 +println(size(simp(der('a', der('a', der('a', EVIL)))))) // => 7 // Python needs around 30 seconds for matching 28 a's with EVIL. // Java 9 and later increase this to an "astonishing" 40000 a's in @@ -171,7 +165,7 @@ // // Lets see how long it takes to match strings with // 5 Million a's...it should be in the range of a -// couple of seconds. +// few seconds. def time_needed[T](i: Int, code: => T) = { val start = System.nanoTime() @@ -180,19 +174,20 @@ "%.5f".format((end - start)/(i * 1.0e9)) } -//for (i <- 0 to 5000000 by 500000) { -// println(s"$i ${time_needed(2, matcher(EVIL, "a" * i))} secs.") -//} +for (i <- 0 to 5000000 by 500000) { + println(s"$i ${time_needed(2, matcher(EVIL, "a" * i))} secs.") +} // another "power" test case -//simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(100).next) == ONE +println(simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(100).next()) == ONE) // the Iterator produces the rexp // // SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE) // -// where SEQ is nested 50 times. - +// where SEQ is nested 100 times. +*/ } +