diff -r e8d966b1826d -r 65cb10f8014a testing4/re.scala --- a/testing4/re.scala Sat Dec 15 23:58:12 2018 +0000 +++ b/testing4/re.scala Sun Dec 16 21:43:14 2018 +0000 @@ -1,21 +1,23 @@ // Part 1 about Regular Expression Matching //========================================== +//object CW9a { + // Regular Expressions abstract class Rexp case object ZERO extends Rexp case object ONE extends Rexp case class CHAR(c: Char) extends Rexp -case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative -case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence -case class STAR(r: Rexp) extends Rexp // star +case class ALT(r1: Rexp, r2: Rexp) extends Rexp +case class SEQ(r1: Rexp, r2: Rexp) extends Rexp +case class STAR(r: Rexp) extends Rexp - -// some convenience for typing regular expressions +// some convenience for typing in regular expressions import scala.language.implicitConversions import scala.language.reflectiveCalls + def charlist2rexp(s: List[Char]): Rexp = s match { case Nil => ONE case c::Nil => CHAR(c) @@ -44,38 +46,30 @@ // accordingly. def nullable (r: Rexp) : Boolean = r match { - case ZERO => false - case ONE => true - case CHAR(_) => false - case ALT(r1, r2) => nullable(r1) | nullable(r2) - case SEQ(r1, r2) => nullable(r1) & nullable(r2) - case STAR(_) => true + case ZERO => false + case ONE => true + case CHAR(_) => false + case ALT(r1, r2) => nullable(r1) || nullable(r2) + case SEQ(r1, r2) => nullable(r1) && nullable(r2) + case STAR(_) => true } - - // (2) Complete the function der according to // the definition given in the coursework; this // function calculates the derivative of a // regular expression w.r.t. a character. -//TODO: debug -//TODO: understand this more. -// first test runs -// test 2 fails -// test 3 runs -// test 4 runs def der (c: Char, r: Rexp) : Rexp = r match { - //TODO: debug - case ZERO => ZERO - case ONE => ZERO - case CHAR(r1) => if (c == r1) ONE else ZERO - case ALT(r1, r2) => ALT(der(c, r1), der(c, r2)) - case SEQ(r1, r2) => if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) else SEQ(der(c, r1), r2) - case STAR(r1) => SEQ(der(c, r1), STAR(r1)) + case ZERO => ZERO + case ONE => ZERO + case CHAR(d) => if (c == d) ONE else ZERO + case ALT(r1, r2) => ALT(der(c, r1), der(c, r2)) + case SEQ(r1, r2) => + if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) + else SEQ(der(c, r1), r2) + case STAR(r1) => SEQ(der(c, r1), STAR(r1)) } - // (3) Complete the simp function according to // the specification given in the coursework; this // function simplifies a regular expression from @@ -84,21 +78,19 @@ // STAR-regular expressions. def simp(r: Rexp) : Rexp = r match { - case STAR(_) => r - case SEQ(r1, r2) => (simp(r1), simp(r2)) match { // potential failure - case (_, ZERO) => ZERO - case (ZERO, _) => ZERO - case (r1, ONE) => simp(r1) - case (ONE, r2) => simp(r2) - case (r1, r2) => SEQ(r1, r2) - } - case ALT(r1, r2) => (simp(r1), simp(r2)) match { - case (r1, ZERO) => simp(r1) - case (ZERO, r1) => simp(r1) - case (r1, r2) if r1 == r2 => simp(r1) - case (r1, r2) => ALT(r1, r2) - } - case r => r + case ALT(r1, r2) => (simp(r1), simp(r2)) match { + case (ZERO, r2s) => r2s + case (r1s, ZERO) => r1s + case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s) + } + case SEQ(r1, r2) => (simp(r1), simp(r2)) match { + case (ZERO, _) => ZERO + case (_, ZERO) => ZERO + case (ONE, r2s) => r2s + case (r1s, ONE) => r1s + case (r1s, r2s) => SEQ(r1s, r2s) + } + case r => r } @@ -106,60 +98,58 @@ // calculates the derivative w.r.t. a string; the second // is the regular expression matcher taking a regular // expression and a string and checks whether the -// string matches the regular expression +// string matches the regular expression. def ders (s: List[Char], r: Rexp) : Rexp = s match { - case Nil => r - case c::cs => ders(cs, simp(der(c, r))) + case Nil => r + case c::s => ders(s, simp(der(c, r))) } -def matcher(r: Rexp, s: String): Boolean = { - nullable(ders(s.toList, r)) -} - +// main matcher function +def matcher(r: Rexp, s: String) = nullable(ders(s.toList, r)) // (5) Complete the size function for regular // expressions according to the specification // given in the coursework. + def size(r: Rexp): Int = r match { - case ZERO => 1 - case ONE => 1 - case CHAR(_) => 1 - case SEQ(r1, r2) => 1 + size(r1) + size(r2) - case ALT(r1, r2) => 1 + size(r1) + size(r2) - case STAR(r1) => 1 + size(r1) + case ZERO => 1 + case ONE => 1 + case CHAR(_) => 1 + case ALT(r1, r2) => 1 + size(r1) + size (r2) + case SEQ(r1, r2) => 1 + size(r1) + size (r2) + case STAR(r1) => 1 + size(r1) } + // some testing data - -//matcher(("a" ~ "b") ~ "c", "abc") // => true -//matcher(("a" ~ "b") ~ "c", "ab") // => false +/* +matcher(("a" ~ "b") ~ "c", "abc") // => true +matcher(("a" ~ "b") ~ "c", "ab") // => false // the supposedly 'evil' regular expression (a*)* b val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) -//matcher(EVIL, "a" * 1000 ++ "b") // => true -//matcher(EVIL, "a" * 1000) // => false +matcher(EVIL, "a" * 1000 ++ "b") // => true +matcher(EVIL, "a" * 1000) // => false // size without simplifications -//size(der('a', der('a', EVIL))) // => 28 -//size(der('a', der('a', der('a', EVIL)))) // => 58 - - +size(der('a', der('a', EVIL))) // => 28 +size(der('a', der('a', der('a', EVIL)))) // => 58 // size with simplification -//size(simp(der('a', der('a', EVIL)))) // => 8 -//size(simp(der('a', der('a', der('a', EVIL))))) // => 8 +size(simp(der('a', der('a', EVIL)))) // => 8 +size(simp(der('a', der('a', der('a', EVIL))))) // => 8 // Python needs around 30 seconds for matching 28 a's with EVIL. // Java 9 and later increase this to an "astonishing" 40000 a's in -// 30 seconds. +// around 30 seconds. // -// Lets see how long it really takes to match strings with -// 5 Million a's...it should be in the range of a couple -// of seconds. +// Lets see how long it takes to match strings with +// 5 Million a's...it should be in the range of a +// couple of seconds. def time_needed[T](i: Int, code: => T) = { val start = System.nanoTime() @@ -168,17 +158,19 @@ (end - start)/(i * 1.0e9) } -//for (i <- 0 to 5000000 by 500000) { -// println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i)))) -//} +for (i <- 0 to 5000000 by 500000) { + println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i)))) +} // another "power" test case -println(simp(Iterator.iterate(ONE:Rexp)(r => ALT(r, r)).drop(40).next)) +simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(100).next) == ONE // the Iterator produces the rexp // // SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE) // -// where SEQ is nested 50 times. +// where SEQ is nested 100 times. + +*/ - +//}