diff -r 178438912e5f -r 50a3b874008a testing3/knight1.scala --- a/testing3/knight1.scala Fri Dec 14 20:01:49 2018 +0000 +++ b/testing3/knight1.scala Sat Dec 15 13:46:54 2018 +0000 @@ -1,121 +1,13 @@ -// Part 1 about finding Knight's tours -//===================================== +// Part 1 about finding and counting Knight's tours +//================================================== -// If you need any auxiliary function, feel free to -// implement it, but do not make any changes to the -// templates below. Also have a look whether the functions -// at the end are of any help. - - +//object CW8a { // for preparing the jar type Pos = (Int, Int) // a position on a chessboard type Path = List[Pos] // a path...a list of positions -//(1) Complete the function that tests whether the position x -// is inside the board and not yet element in the path. -def is_legal(dim: Int, path: Path, x: Pos) : Boolean = { - if ((x._1 < dim && x._2 < dim) && !(path.contains(x))) - true - else - false -} - - - -//(2) Complete the function that calculates for a position x -// all legal onward moves that are not already in the path. -// The moves should be ordered in a "clockwise" manner. - - -def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = { - val legalMovesList = List((x._1 + 1, x._2 + 2), (x._1 + 2, x._2 + 1), (x._1 + 2, x._2 - 1), (x._1 + 1, x._2 - 2), (x._1 - 1, x._2 - 2), (x._1 - 2, x._2 - 1), (x._1 - 2, x._2 + 1), (x._1 - 1, x._2 + 2)) - - for (i <- legalMovesList - if (is_legal(dim, path, i))) - yield i - -} - - -//some test cases -// -//assert(legal_moves(8, Nil, (2,2)) == -// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))) -//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6))) -//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == -// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4))) -//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6))) - - -//(3) Complete the two recursive functions below. -// They exhaustively search for knight's tours starting from the -// given path. The first function counts all possible tours, -// and the second collects all tours in a list of paths. - -def count_tours(dim: Int, path: Path) : Int = { - if (path.size == (dim ^ 2)){ - List(path).size - } else { - val totalTours = legal_moves(dim, path, path.head) - totalTours.map(element => count_tours(dim, element :: path)).sum - } -} - -def enum_tours(dim: Int, path: Path) : List[Path] = { - if (path.size == (dim ^ 2)){ - List(path) - } else { - val totalEnums = legal_moves(dim, path, path.head) - totalEnums.map(element => enum_tours(dim, element :: path)).flatten - } -} - - -//(5) Implement a first-function that finds the first -// element, say x, in the list xs where f is not None. -// In that case Return f(x), otherwise None. If possible, -// calculate f(x) only once. - -def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = { - if (xs eq Nil) { - None - } else { - if (f(xs.head) != None) { - f(xs.head) - } else { - first(xs.tail, f) - } - } - -} - - -// test cases -//def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None -// -//first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo) // Some(List((4,0))) -//first(List((1, 0),(2, 0),(3, 0)), foo) // None - - - - -//(6) Implement a function that uses the first-function from (5) for -// trying out onward moves, and searches recursively for a -// knight tour on a dim * dim-board. - - -//def first_tour(dim: Int, path: Path) : Option[Path] = ... - - - - - - -/* Helper functions - - -// for measuring time +// for measuring time in the JAR def time_needed[T](code: => T) : T = { val start = System.nanoTime() val result = code @@ -124,11 +16,6 @@ result } -// can be called for example with -// time_needed(count_tours(dim, List((0, 0)))) -// in order to print out the time that is needed for -// running count_tours - // for printing a board def print_board(dim: Int, path: Path): Unit = { println @@ -140,5 +27,144 @@ } } +def is_legal(dim: Int, path: Path, x: Pos): Boolean = + 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) +// testcases +//assert(is_legal(8, Nil, (3, 4)) == true) +//assert(is_legal(8, List((4, 1), (1, 0)), (4, 1)) == false) +//assert(is_legal(2, Nil, (0, 0)) == true) + + +def add_pair(x: Pos, y: Pos): Pos = + (x._1 + y._1, x._2 + y._2) + +def moves(x: Pos): List[Pos] = + List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), + (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x, _)) + +// 1 mark + +def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = + moves(x).filter(is_legal(dim, path, _)) + +// testcases +//assert(legal_moves(8, Nil, (2,2)) == +// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))) +//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6))) +//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == +// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4))) +//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6))) +//assert(legal_moves(1, Nil, (0,0)) == List()) +//assert(legal_moves(2, Nil, (0,0)) == List()) +//assert(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1))) + +// 2 marks + +def tcount_tours(dim: Int, path: Path): Int = { + if (path.length == dim * dim) 1 + else + (for (x <- legal_moves(dim, path, path.head)) yield tcount_tours(dim, x::path)).sum +} + +def count_tours(dim: Int, path: Path) = + time_needed(tcount_tours(dim: Int, path: Path)) + + +def tenum_tours(dim: Int, path: Path): List[Path] = { + if (path.length == dim * dim) List(path) + else + (for (x <- legal_moves(dim, path, path.head)) yield tenum_tours(dim, x::path)).flatten +} + +def enum_tours(dim: Int, path: Path) = + time_needed(tenum_tours(dim: Int, path: Path)) + +// test cases + +/* +def count_all_tours(dim: Int) = { + for (i <- (0 until dim).toList; + j <- (0 until dim).toList) yield count_tours(dim, List((i, j))) +} + +def enum_all_tours(dim: Int): List[Path] = { + (for (i <- (0 until dim).toList; + j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten +} + + +println("Number of tours starting from (0, 0)") + +for (dim <- 1 to 5) { + println(s"${dim} x ${dim} " + time_needed(0, count_tours(dim, List((0, 0))))) +} + +println("Number of tours starting from all fields") + +for (dim <- 1 to 5) { + println(s"${dim} x ${dim} " + time_needed(0, count_all_tours(dim))) +} + +for (dim <- 1 to 5) { + val ts = enum_tours(dim, List((0, 0))) + println(s"${dim} x ${dim} ") + if (ts != Nil) { + print_board(dim, ts.head) + println(ts.head) + } +} */ + +// 1 mark + +def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match { + case Nil => None + case x::xs => { + val result = f(x) + if (result.isDefined) result else first(xs, f) + } +} + +// test cases +//def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None +// +//first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo) +//first(List((1, 0),(2, 0),(3, 0)), foo) + + +// 1 mark + +def tfirst_tour(dim: Int, path: Path): Option[Path] = { + if (path.length == dim * dim) Some(path) + else + first(legal_moves(dim, path, path.head), (x:Pos) => tfirst_tour(dim, x::path)) +} + +def first_tour(dim: Int, path: Path) = + time_needed(tfirst_tour(dim: Int, path: Path)) + + +/* +for (dim <- 1 to 8) { + val t = first_tour(dim, List((0, 0))) + println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) +} +*/ + +// 15 secs for 8 x 8 +//val ts1 = time_needed(0,first_tour(8, List((0, 0))).get) + +// no result for 4 x 4 +//val ts2 = time_needed(0, first_tour(4, List((0, 0)))) + +// 0.3 secs for 6 x 6 +//val ts3 = time_needed(0, first_tour(6, List((0, 0)))) + +// 15 secs for 8 x 8 +//time_needed(0, print_board(8, first_tour(8, List((0, 0))).get)) + + +//} + +