diff -r 092e0879a5ae -r 4bda49ec24da progs/knight1.scala --- a/progs/knight1.scala Tue Nov 20 13:42:32 2018 +0000 +++ b/progs/knight1.scala Tue Nov 20 14:31:14 2018 +0000 @@ -4,33 +4,95 @@ type Pos = (Int, Int) // a position on a chessboard type Path = List[Pos] // a path...a list of positions -//(1a) Complete the function that tests whether the position -// is inside the board and not yet element in the path. +def print_board(dim: Int, path: Path): Unit = { + println + for (i <- 0 until dim) { + for (j <- 0 until dim) { + print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ") + } + println + } +} -def is_legal(dim: Int, path: Path)(x: Pos): Boolean = ... + +// 1 mark + +def is_legal(dim: Int, path: Path, x: Pos): Boolean = + 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) + +assert(is_legal(8, Nil)((3,4)) == true) +assert(is_legal(8, List((4,1), (1,0)))((4,1)) == false) +assert(is_legal(2, Nil)((0,0)) == true) -//(1b) Complete the function that calculates for a position -// all legal onward moves that are not already in the path. -// The moves should be ordered in a "clockwise" order. - -def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = ... +def add_pair(x: Pos)(y: Pos): Pos = + (x._1 + y._1, x._2 + y._2) + +def moves(x: Pos): List[Pos] = + List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), + (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)) + +// 1 mark + +def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = + moves(x).filter(is_legal(dim, path)) -//assert(legal_moves(8, Nil, (2,2)) == -// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))) -//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6))) -//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == -// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4))) -//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6))) +assert(legal_moves(8, Nil, (2,2)) == + List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))) +assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6))) +assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == + List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4))) +assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6))) +assert(legal_moves(1, Nil, (0,0)) == List()) +assert(legal_moves(2, Nil, (0,0)) == List()) +assert(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1))) + +// 2 marks + +def count_tours(dim: Int, path: Path): Int = { + if (path.length == dim * dim) 1 + else + (for (x <- legal_moves(dim, path, path.head)) yield count_tours(dim, x::path)).sum +} + +def enum_tours(dim: Int, path: Path): List[Path] = { + if (path.length == dim * dim) List(path) + else + (for (x <- legal_moves(dim, path, path.head)) yield enum_tours(dim, x::path)).flatten +} + +// as far as tasks go -//(1c) Complete the two recursive functions below. -// They exhaustively search for open tours starting from the -// given path. The first function counts all possible open tours, -// and the second collects all open tours in a list of paths. -def count_tours(dim: Int, path: Path): Int = ... +def count_all_tours(dim: Int) = { + for (i <- (0 until dim).toList; + j <- (0 until dim).toList) yield count_tours(dim, List((i, j))) +} -def enum_tours(dim: Int, path: Path): List[Path] = ... +def enum_all_tours(dim: Int): List[Path] = { + (for (i <- (0 until dim).toList; + j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten +} +println("Number of tours starting from (0, 0)") + +for (dim <- 1 to 5) { + println(s"${dim} x ${dim} " + count_tours(dim, List((0, 0)))) +} + +for (dim <- 1 to 5) { + println(s"${dim} x ${dim} " + count_all_tours(dim)) +} + +for (dim <- 1 to 5) { + val ts = enum_tours(dim, List((0, 0))) + println(s"${dim} x ${dim} ") + if (ts != Nil) { + print_board(dim, ts.head) + println(ts.head) + } +} + +