diff -r 017f621f5835 -r 3ffe978a5664 core_templates3/postfix.scala --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/core_templates3/postfix.scala Fri Nov 05 16:47:55 2021 +0000 @@ -0,0 +1,81 @@ +// Shunting Yard Algorithm +// by Edsger Dijkstra +// ======================== + +object C3a { + +// type of tokens +type Toks = List[String] + +// the operations in the basic version of the algorithm +val ops = List("+", "-", "*", "/") + +// the precedences of the operators +val precs = Map("+" -> 1, + "-" -> 1, + "*" -> 2, + "/" -> 2) + +// helper function for splitting strings into tokens +def split(s: String) : Toks = s.split(" ").toList + + +// (1) Implement below the shunting yard algorithm. The most +// convenient way to this in Scala is to implement a recursive +// function and to heavily use pattern matching. The function syard +// takes some input tokens as first argument. The second and third +// arguments represent the stack and the output of the shunting yard +// algorithm. +// +// In the marking, you can assume the function is called only with +// an empty stack and an empty output list. You can also assume the +// input os only properly formatted (infix) arithmetic expressions +// (all parentheses will be well-nested, the input only contains +// operators and numbers). + +// You can implement any additional helper function you need. I found +// it helpful to implement two auxiliary functions for the pattern matching: +// + +def is_op(op: String) : Boolean = ??? +def prec(op1: String, op2: String) : Boolean = ??? + + +def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = ??? + + +// test cases +//syard(split("3 + 4 * ( 2 - 1 )")) // 3 4 2 1 - * + +//syard(split("10 + 12 * 33")) // 10 12 33 * + +//syard(split("( 5 + 7 ) * 2")) // 5 7 + 2 * +//syard(split("5 + 7 / 2")) // 5 7 2 / + +//syard(split("5 * 7 / 2")) // 5 7 * 2 / +//syard(split("9 + 24 / ( 7 - 3 )")) // 9 24 7 3 - / + + +//syard(split("3 + 4 + 5")) // 3 4 + 5 + +//syard(split("( ( 3 + 4 ) + 5 )")) // 3 4 + 5 + +//syard(split("( 3 + ( 4 + 5 ) )")) // 3 4 5 + + +//syard(split("( ( ( 3 ) ) + ( ( 4 + ( 5 ) ) ) )")) // 3 4 5 + + + + +// (2) Implement a compute function that evaluates an input list +// in postfix notation. This function takes a list of tokens +// and a stack as argumenta. The function should produce the +// result as an integer using the stack. You can assume +// this function will be only called with proper postfix +// expressions. + +def compute(toks: Toks, st: List[Int] = Nil) : Int = ??? + + +// test cases +// compute(syard(split("3 + 4 * ( 2 - 1 )"))) // 7 +// compute(syard(split("10 + 12 * 33"))) // 406 +// compute(syard(split("( 5 + 7 ) * 2"))) // 24 +// compute(syard(split("5 + 7 / 2"))) // 8 +// compute(syard(split("5 * 7 / 2"))) // 17 +// compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15 + +} + +