diff -r 3ffe978a5664 -r 085fefce672e main_templates4/knight1.scala --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main_templates4/knight1.scala Fri Nov 05 17:20:01 2021 +0000 @@ -0,0 +1,107 @@ +// Main Part 4 about finding Knight's tours +//========================================== + + +object M4a { + +// If you need any auxiliary function, feel free to +// implement it, but do not make any changes to the +// templates below. Also have a look whether the functions +// at the end are of any help. + + + +type Pos = (Int, Int) // a position on a chessboard +type Path = List[Pos] // a path...a list of positions + +//(1) Complete the function that tests whether the position x +// is inside the board and not yet element in the path. + +def is_legal(dim: Int, path: Path, x: Pos) : Boolean = ??? + + + +//(2) Complete the function that calculates for a position x +// all legal onward moves that are not already in the path. +// The moves should be ordered in a "clockwise" manner. + +def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = ??? + + +//some testcases +// +//assert(legal_moves(8, Nil, (2,2)) == +// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))) +//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6))) +//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == +// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4))) +//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6))) + + +//(3) Complete the two recursive functions below. +// They exhaustively search for knight's tours starting from the +// given path. The first function counts all possible tours, +// and the second collects all tours in a list of paths. + +def count_tours(dim: Int, path: Path) : Int = ??? + +def enum_tours(dim: Int, path: Path) : List[Path] = ??? + + +//(4) Implement a first-function that finds the first +// element, say x, in the list xs where f is not None. +// In that case Return f(x), otherwise None. If possible, +// calculate f(x) only once. + +def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = ??? + + +// testcases +// +//def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None +// +//first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo) // Some(List((4,0))) +//first(List((1, 0),(2, 0),(3, 0)), foo) // None + + +//(5) Implement a function that uses the first-function from (4) for +// trying out onward moves, and searches recursively for a +// knight tour on a dim * dim-board. + +def first_tour(dim: Int, path: Path) : Option[Path] = ??? + + + +/* Helper functions + + +// for measuring time +def time_needed[T](code: => T) : T = { + val start = System.nanoTime() + val result = code + val end = System.nanoTime() + println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.") + result +} + +// can be called for example with +// time_needed(count_tours(dim, List((0, 0)))) +// in order to print out the time that is needed for +// running count_tours + + +// for printing a board +def print_board(dim: Int, path: Path): Unit = { + println() + for (i <- 0 until dim) { + for (j <- 0 until dim) { + print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ") + } + println() + } +} + + +*/ + +}