// Shunting Yard Algorithm
// by Edsger Dijkstra
// ========================
object CW9a {
type Toks = List[String]
// the operations in the simple version
val ops = List("+", "-", "*", "/")
// the precedences of the operators
val precs = Map("+" -> 1,
"-" -> 1,
"*" -> 2,
"/" -> 2)
// helper function for splitting strings into tokens
def split(s: String) : Toks = s.split(" ").toList
// (6) Implement below the shunting yard algorithm. The most
// convenient way to this in Scala is to implement a recursive
// function and to heavily use pattern matching. The function syard
// takes some input tokens as first argument. The second and third
// arguments represent the stack and the output of the shunting yard
// algorithm.
//
// In the marking, you can assume the function is called only with
// an empty stack and an empty output list. You can also assume the
// input os only properly formatted (infix) arithmetic expressions
// (all parentheses will be well-nested, the input only contains
// operators and numbers).
// You can implement any additional helper function you need. I found
// it helpful to implement two auxiliary functions for the pattern matching:
//
def is_op(op: String) : Boolean = ops.contains(op)
def prec(op1: String, op2: String) : Boolean = precs(op1) <= precs(op2)
def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = (toks, st, out) match {
case (Nil, _, _) => out.reverse ::: st
case (num::in, st, out) if (num.forall(_.isDigit)) =>
syard(in, st, num :: out)
case (op1::in, op2::st, out) if (is_op(op1) && is_op(op2) && prec(op1, op2)) =>
syard(op1::in, st, op2 :: out)
case (op1::in, st, out) if (is_op(op1)) => syard(in, op1::st, out)
case ("("::in, st, out) => syard(in, "("::st, out)
case (")"::in, op2::st, out) =>
if (op2 == "(") syard(in, st, out) else syard(")"::in, st, op2 :: out)
case (in, st, out) => {
println(s"in: ${in} st: ${st} out: ${out.reverse}")
Nil
}
}
// test cases
//syard(split("3 + 4 * ( 2 - 1 )")) // 3 4 2 1 - * +
//syard(split("10 + 12 * 33")) // 10 12 33 * +
//syard(split("( 5 + 7 ) * 2")) // 5 7 + 2 *
//syard(split("5 + 7 / 2")) // 5 7 2 / +
//syard(split("5 * 7 / 2")) // 5 7 * 2 /
//syard(split("9 + 24 / ( 7 - 3 )")) // 9 24 7 3 - / +
//syard(split("3 + 4 + 5")) // 3 4 + 5 +
//syard(split("( ( 3 + 4 ) + 5 )")) // 3 4 + 5 +
//syard(split("( 3 + ( 4 + 5 ) )")) // 3 4 5 + +
//syard(split("( ( ( 3 ) ) + ( ( 4 + ( 5 ) ) ) )")) // 3 4 5 + +
// (7) Implement a compute function that evaluates an input list
// in postfix notation. This function takes a list of tokens
// and a stack as argumenta. The function should produce the
// result as an integer using the stack. You can assume
// this function will be only called with proper postfix
// expressions.
def op_comp(s: String, n1: Int, n2: Int) = s match {
case "+" => n2 + n1
case "-" => n2 - n1
case "*" => n2 * n1
case "/" => n2 / n1
}
def compute(toks: Toks, st: List[Int] = Nil) : Int = (toks, st) match {
case (Nil, st) => st.head
case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st)
case (num::in, st) => compute(in, num.toInt::st)
}
// test cases
// compute(syard(split("3 + 4 * ( 2 - 1 )"))) // 7
// compute(syard(split("10 + 12 * 33"))) // 406
// compute(syard(split("( 5 + 7 ) * 2"))) // 24
// compute(syard(split("5 + 7 / 2"))) // 8
// compute(syard(split("5 * 7 / 2"))) // 17
// compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15
}