// Shunting Yard Algorithm
// including Associativity for Operators
// =====================================
object CW9b {
// type of tokens
type Toks = List[String]
// helper function for splitting strings into tokens
def split(s: String) : Toks = s.split(" ").toList
// left- and right-associativity
abstract class Assoc
case object LA extends Assoc
case object RA extends Assoc
// power is right-associative,
// everything else is left-associative
def assoc(s: String) : Assoc = s match {
case "^" => RA
case _ => LA
}
// the precedences of the operators
val precs = Map("+" -> 1,
"-" -> 1,
"*" -> 2,
"/" -> 2,
"^" -> 4)
// the operations in the basic version of the algorithm
val ops = List("+", "-", "*", "/", "^")
// (3) Implement the extended version of the shunting yard algorithm.
// This version should properly account for the fact that the power
// operation is right-associative. Apart from the extension to include
// the power operation, you can make the same assumptions as in
// basic version.
// def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = ...
// test cases
// syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3")) // 3 4 8 * 5 1 - 2 3 ^ ^ / +
// (4) Implement a compute function that produces a Long(!) for an
// input list of tokens in postfix notation.
//def compute(toks: Toks, st: List[Long] = Nil) : Long = ...
// test cases
// compute(syard(split("3 + 4 * ( 2 - 1 )"))) // 7
// compute(syard(split("10 + 12 * 33"))) // 406
// compute(syard(split("( 5 + 7 ) * 2"))) // 24
// compute(syard(split("5 + 7 / 2"))) // 8
// compute(syard(split("5 * 7 / 2"))) // 17
// compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15
// compute(syard(split("4 ^ 3 ^ 2"))) // 262144
// compute(syard(split("4 ^ ( 3 ^ 2 )"))) // 262144
// compute(syard(split("( 4 ^ 3 ) ^ 2"))) // 4096
// compute(syard(split("( 3 + 1 ) ^ 2 ^ 3"))) // 65536
}