// Part 1 about finding Knight's tours
//=====================================
// If you need any auxiliary function, feel free to
// implement it, but do not make any changes to the
// templates below. Also have a look whether the functions
// at the end are of any help.
type Pos = (Int, Int) // a position on a chessboard
type Path = List[Pos] // a path...a list of positions
//(1) Complete the function that tests whether the position x
// is inside the board and not yet element in the path.
def is_legal(dim: Int, path: Path, x: Pos) : Boolean = {
if ((x._1 < dim && x._2 < dim) && !(path.contains(x)))
true
else
false
}
//(2) Complete the function that calculates for a position x
// all legal onward moves that are not already in the path.
// The moves should be ordered in a "clockwise" manner.
def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = {
val legalMovesList = List((x._1 + 1, x._2 + 2), (x._1 + 2, x._2 + 1), (x._1 + 2, x._2 - 1), (x._1 + 1, x._2 - 2), (x._1 - 1, x._2 - 2), (x._1 - 2, x._2 - 1), (x._1 - 2, x._2 + 1), (x._1 - 1, x._2 + 2))
for (i <- legalMovesList
if (is_legal(dim, path, i)))
yield i
}
//some test cases
//
//assert(legal_moves(8, Nil, (2,2)) ==
// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==
// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
//(3) Complete the two recursive functions below.
// They exhaustively search for knight's tours starting from the
// given path. The first function counts all possible tours,
// and the second collects all tours in a list of paths.
def count_tours(dim: Int, path: Path) : Int = {
if (path.size == (dim ^ 2)){
List(path).size
} else {
val totalTours = legal_moves(dim, path, path.head)
totalTours.map(element => count_tours(dim, element :: path)).sum
}
}
def enum_tours(dim: Int, path: Path) : List[Path] = {
if (path.size == (dim ^ 2)){
List(path)
} else {
val totalEnums = legal_moves(dim, path, path.head)
totalEnums.map(element => enum_tours(dim, element :: path)).flatten
}
}
//(5) Implement a first-function that finds the first
// element, say x, in the list xs where f is not None.
// In that case Return f(x), otherwise None. If possible,
// calculate f(x) only once.
def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = {
if (xs eq Nil) {
None
} else {
if (f(xs.head) != None) {
f(xs.head)
} else {
first(xs.tail, f)
}
}
}
// test cases
//def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
//
//first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo) // Some(List((4,0)))
//first(List((1, 0),(2, 0),(3, 0)), foo) // None
//(6) Implement a function that uses the first-function from (5) for
// trying out onward moves, and searches recursively for a
// knight tour on a dim * dim-board.
//def first_tour(dim: Int, path: Path) : Option[Path] = ...
/* Helper functions
// for measuring time
def time_needed[T](code: => T) : T = {
val start = System.nanoTime()
val result = code
val end = System.nanoTime()
println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
result
}
// can be called for example with
// time_needed(count_tours(dim, List((0, 0))))
// in order to print out the time that is needed for
// running count_tours
// for printing a board
def print_board(dim: Int, path: Path): Unit = {
println
for (i <- 0 until dim) {
for (j <- 0 until dim) {
print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ")
}
println
}
}
*/