// Main Part 3 about Regular Expression Matching
//==============================================
object M3 {
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALTs(rs: List[Rexp]) extends Rexp // alternatives
case class SEQs(rs: List[Rexp]) extends Rexp // sequences
case class STAR(r: Rexp) extends Rexp // star
//the usual binary choice and binary sequence can be defined
//in terms of ALTs and SEQs
def ALT(r1: Rexp, r2: Rexp) = ALTs(List(r1, r2))
def SEQ(r1: Rexp, r2: Rexp) = SEQs(List(r1, r2))
// some convenience for typing regular expressions
import scala.language.implicitConversions
import scala.language.reflectiveCalls
def charlist2rexp(s: List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)
implicit def RexpOps (r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps (s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
}
// examples for the implicits:
// ALT(CHAR('a'), CHAR('b'))
// val areg : Rexp = "a" | "b"
// SEQ(CHAR('a'), CHAR('b'))
// val sreg : Rexp = "a" ~ "b"
// ADD YOUR CODE BELOW
//======================
// (1)
def nullable (r: Rexp) : Boolean = ???
// (2)
def der (c: Char, r: Rexp) : Rexp = ???
// (3)
def denest(rs: List[Rexp]) : List[Rexp] = ???
// (4)
def flts(rs: List[Rexp], acc: List[Rexp] = Nil) : List[Rexp] = ???
// (5)
def ALTs_smart(rs: List[Rexp]) : Rexp = ???
def SEQs_smart(rs: List[Rexp]) : Rexp = ???
// (6)
def simp(r: Rexp) : Rexp = ???
// (7)
def ders (s: List[Char], r: Rexp) : Rexp = ???
def matcher(r: Rexp, s: String): Boolean = ???
// (8)
def size(r: Rexp): Int = ???
// Some testing data
//===================
/*
simp(ALT(ONE | CHAR('a'), CHAR('a') | ONE)) // => ALTs(List(ONE, CHAR(a)))
simp(((CHAR('a') | ZERO) ~ ONE) |
(((ONE | CHAR('b')) | CHAR('c')) ~ (CHAR('d') ~ ZERO))) // => CHAR(a)
matcher(("a" ~ "b") ~ "c", "ab") // => false
matcher(("a" ~ "b") ~ "c", "abc") // => true
// the supposedly 'evil' regular expression (a*)* b
val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
matcher(EVIL, "a" * 1000) // => false
matcher(EVIL, "a" * 1000 ++ "b") // => true
// size without simplifications
size(der('a', der('a', EVIL))) // => 36
size(der('a', der('a', der('a', EVIL)))) // => 83
// size with simplification
size(simp(der('a', der('a', EVIL)))) // => 7
size(simp(der('a', der('a', der('a', EVIL))))) // => 7
// Python needs around 30 seconds for matching 28 a's with EVIL.
// Java 9 and later increase this to an "astonishing" 40000 a's in
// 30 seconds.
//
// Lets see how long it really takes to match strings with
// 5 Million a's...it should be in the range of a few
// of seconds.
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
"%.5f".format((end - start)/(i * 1.0e9))
}
for (i <- 0 to 5000000 by 500000) {
println(s"$i ${time_needed(2, matcher(EVIL, "a" * i))} secs.")
}
// another "power" test case
simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(50).next()) == ONE
// the Iterator produces the rexp
//
// SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE)
//
// where SEQ is nested 50 times.
*/
}