// Basic Part about the 3n+1 conjecture//==================================// generate jar with// > scala -d collatz.jar collatz.scalaobject CW6a { // for purposes of generating a jardef collatz(n: Long): Long = if (n == 1) 0 else if (n % 2 == 0) 1 + collatz(n / 2) else 1 + collatz(3 * n + 1)def collatz_max(bnd: Long): (Long, Long) = { val all = for (i <- (1L to bnd)) yield (collatz(i), i) all.maxBy(_._1)}//collatz_max(1000000)//collatz_max(10000000)//collatz_max(100000000)/* some test casesval bnds = List(10, 100, 1000, 10000, 100000, 1000000)for (bnd <- bnds) { val (steps, max) = collatz_max(bnd) println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}")}*/def is_pow(n: Long) : Boolean = (n & (n - 1)) == 0def is_hard(n: Long) : Boolean = is_pow(3 * n + 1)def last_odd(n: Long) : Long = if (is_hard(n)) n else if (n % 2 == 0) last_odd(n / 2) else last_odd(3 * n + 1)//for (i <- 130 to 10000) println(s"$i: ${last_odd(i)}")//for (i <- 1 to 100) println(s"$i: ${collatz(i)}")}