// Shunting Yard Algorithm
// including Associativity for Operators
// =====================================
object CW8b {
// type of tokens
type Toks = List[String]
// helper function for splitting strings into tokens
def split(s: String) : Toks = s.split(" ").toList
// left- and right-associativity
abstract class Assoc
case object LA extends Assoc
case object RA extends Assoc
// power is right-associative,
// everything else is left-associative
def assoc(s: String) : Assoc = s match {
case "^" => RA
case _ => LA
}
// the precedences of the operators
val precs = Map("+" -> 1,
"-" -> 1,
"*" -> 2,
"/" -> 2,
"^" -> 4)
// the operations in the basic version of the algorithm
val ops = List("+", "-", "*", "/", "^")
// (8) Implement the extended version of the shunting yard algorithm.
// This version should properly account for the fact that the power
// operation is right-associative. Apart from the extension to include
// the power operation, you can make the same assumptions as in
// basic version.
def is_op(op: String) : Boolean = ops.contains(op)
def prec(op1: String, op2: String) : Boolean = assoc(op1) match {
case LA => precs(op1) <= precs(op2)
case RA => precs(op1) < precs(op2)
}
def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = (toks, st, out) match {
case (Nil, _, _) => out.reverse ::: st
case (num::in, st, out) if (num.forall(_.isDigit)) =>
syard(in, st, num :: out)
case (op1::in, op2::st, out) if (is_op(op1) && is_op(op2) && prec(op1, op2)) =>
syard(op1::in, st, op2 :: out)
case (op1::in, st, out) if (is_op(op1)) => syard(in, op1::st, out)
case ("("::in, st, out) => syard(in, "("::st, out)
case (")"::in, op2::st, out) =>
if (op2 == "(") syard(in, st, out) else syard(")"::in, st, op2 :: out)
case (in, st, out) => {
println(s"in: ${in} st: ${st} out: ${out.reverse}")
Nil
}
}
def op_comp(s: String, n1: Int, n2: Int) = s match {
case "+" => n2 + n1
case "-" => n2 - n1
case "*" => n2 * n1
case "/" => n2 / n1
case "^" => BigInt(n2).pow(n1).toInt
}
def compute(toks: Toks, st: List[Int] = Nil) : Int = (toks, st) match {
case (Nil, st) => st.head
case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st)
case (num::in, st) => compute(in, num.toInt::st)
}
//compute(syard(split("3 + 4 * ( 2 - 1 )"))) // 7
//compute(syard(split("10 + 12 * 33"))) // 406
//compute(syard(split("( 5 + 7 ) * 2"))) // 24
//compute(syard(split("5 + 7 / 2"))) // 8
//compute(syard(split("5 * 7 / 2"))) // 17
//compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15
//compute(syard(split("4 ^ 3 ^ 2"))) // 262144
//compute(syard(split("4 ^ ( 3 ^ 2 )"))) // 262144
//compute(syard(split("( 4 ^ 3 ) ^ 2"))) // 4096
//compute(syard(split("( 3 + 1 ) ^ 2 ^ 3"))) // 65536
//syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3")) // 3 4 8 * 5 1 - 2 3 ^ ^ / +
//compute(syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))) // 3
//compute(syard(split("( 3 + 1 ) ^ 2 ^ 3"))) // 65536
}