progs/lecture5.scala
author Christian Urban <urbanc@in.tum.de>
Wed, 24 Jul 2019 14:22:06 +0100
changeset 266 ca48ac1d3c3e
parent 247 50a3b874008a
child 326 e5453add7df6
permissions -rw-r--r--
updated to 2.13

// Scala Lecture 5
//=================



// Laziness with style
//=====================

// The concept of lazy evaluation doesn’t really 
// exist in non-functional languages, but it is 
// pretty easy to grasp. Consider first 

def square(x: Int) = x * x

square(42 + 8)

// this is called strict evaluation

// say we have a pretty expensive operation
def peop(n: BigInt): Boolean = peop(n + 1) 

val a = "foo"
val b = "bar"

if (a == b || peop(0)) println("true") else println("false")

// this is called lazy evaluation
// you delay compuation until it is really 
// needed; once calculated though, does not 
// need to be re-calculated

// a useful example is
def time_needed[T](i: Int, code: => T) = {
  val start = System.nanoTime()
  for (j <- 1 to i) code
  val end = System.nanoTime()
  f"${(end - start) / (i * 1.0e9)}%.6f secs"
}


// streams (I do not care how many)
// primes: 2, 3, 5, 7, 9, 11, 13 ....

def generatePrimes (s: Stream[Int]): Stream[Int] =
  s.head #:: generatePrimes(s.tail.filter(_ % s.head != 0))

val primes = generatePrimes(Stream.from(2))

// the first 10 primes
primes.take(10).par.toList

time_needed(1, primes.filter(_ > 100).take(3000).toList)
time_needed(1, primes.filter(_ > 100).take(1000).toList)

// a stream of successive numbers

Stream.from(2).print
Stream.from(2).take(10).force
Stream.from(2).take(10).print
Stream.from(10).take(10).print

Stream.from(2).take(10).force

// iterative version of the Fibonacci numbers
def fibIter(a: BigInt, b: BigInt): Stream[BigInt] =
  a #:: fibIter(b, a + b)


fibIter(1, 1).take(10).force
fibIter(8, 13).take(10).force

fibIter(1, 1).drop(10000).take(1).print


// good for testing


// Regular expressions - the power of DSLs in Scala
//                                     and Laziness
//==================================================

abstract class Rexp
case object ZERO extends Rexp                     // nothing
case object ONE extends Rexp                      // the empty string
case class CHAR(c: Char) extends Rexp             // a character c
case class ALT(r1: Rexp, r2: Rexp) extends Rexp   // alternative  r1 + r2
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp   // sequence     r1 . r2  
case class STAR(r: Rexp) extends Rexp             // star         r*


// some convenience for typing in regular expressions
import scala.language.implicitConversions    
import scala.language.reflectiveCalls 

def charlist2rexp(s: List[Char]): Rexp = s match {
  case Nil => ONE
  case c::Nil => CHAR(c)
  case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s: String): Rexp = 
  charlist2rexp(s.toList)


implicit def RexpOps (r: Rexp) = new {
  def | (s: Rexp) = ALT(r, s)
  def % = STAR(r)
  def ~ (s: Rexp) = SEQ(r, s)
}

implicit def stringOps (s: String) = new {
  def | (r: Rexp) = ALT(s, r)
  def | (r: String) = ALT(s, r)
  def % = STAR(s)
  def ~ (r: Rexp) = SEQ(s, r)
  def ~ (r: String) = SEQ(s, r)
}


def depth(r: Rexp) : Int = r match {
  case ZERO => 0
  case ONE => 0
  case CHAR(_) => 0
  case ALT(r1, r2) => Math.max(depth(r1), depth(r2)) + 1
  case SEQ(r1, r2) => Math.max(depth(r1), depth(r2)) + 1 
  case STAR(r1) => depth(r1) + 1
}

//example regular expressions
val digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
val sign = "+" | "-" | ""
val number = sign ~ digit ~ digit.% 

// task: enumerate exhaustively regular expression
// starting from small ones towards bigger ones.

// 1st idea: enumerate them all in a Set
// up to a level

def enuml(l: Int, s: String) : Set[Rexp] = l match {
  case 0 => Set(ZERO, ONE) ++ s.map(CHAR).toSet
  case n =>  
    val rs = enuml(n - 1, s)
    rs ++
    (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) ++
    (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) ++
    (for (r1 <- rs) yield STAR(r1))
}

enuml(1, "a")
enuml(1, "a").size
enuml(2, "a").size
enuml(3, "a").size 
enuml(4, "a").size // out of heap space


def enum(rs: Stream[Rexp]) : Stream[Rexp] = 
  rs #::: enum( (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #:::
                (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #:::
                (for (r1 <- rs) yield STAR(r1)) )


enum(ZERO #:: ONE #:: "ab".toStream.map(CHAR)).take(200).force
enum(ZERO #:: ONE #:: "ab".toStream.map(CHAR)).take(5000000)


val is = 
  (enum(ZERO #:: ONE #:: "ab".toStream.map(CHAR))
    .dropWhile(depth(_) < 3)
    .take(10).foreach(println))



// Parsing - The Solved Problem That Isn't
//=========================================
//
// https://tratt.net/laurie/blog/entries/parsing_the_solved_problem_that_isnt.html
//
// Or, A topic of endless "fun"(?)


// input type: String
// output type: Int
Integer.parseInt("123u456")

/* Note, in the previous lectures I did not show the type consraint
 * I <% Seq[_] , which means that the input type I can be
 * treated, or seen, as a sequence. */

abstract class Parser[I <% Seq[_], T] {
  def parse(ts: I): Set[(T, I)]

  def parse_all(ts: I) : Set[T] =
    for ((head, tail) <- parse(ts); 
        if (tail.isEmpty)) yield head
}

// the idea is that a parser can parse something
// from the input and leaves something unparsed => pairs

class AltParser[I <% Seq[_], T](
  p: => Parser[I, T], 
  q: => Parser[I, T]) extends Parser[I, T] {

  def parse(sb: I) = p.parse(sb) ++ q.parse(sb)   
}


class SeqParser[I <% Seq[_], T, S](
  p: => Parser[I, T], 
  q: => Parser[I, S]) extends Parser[I, (T, S)] {

  def parse(sb: I) = 
    for ((head1, tail1) <- p.parse(sb); 
         (head2, tail2) <- q.parse(tail1)) yield ((head1, head2), tail2)
}


class FunParser[I <% Seq[_], T, S](
  p: => Parser[I, T], 
  f: T => S) extends Parser[I, S] {

  def parse(sb: I) = 
    for ((head, tail) <- p.parse(sb)) yield (f(head), tail)
}


// atomic parsers  
case class CharParser(c: Char) extends Parser[String, Char] {
  def parse(sb: String) = 
    if (sb != "" && sb.head == c) Set((c, sb.tail)) else Set()
}

import scala.util.matching.Regex
case class RegexParser(reg: Regex) extends Parser[String, String] {
  def parse(sb: String) = reg.findPrefixMatchOf(sb) match {
    case None => Set()
    case Some(m) => Set((m.matched, m.after.toString))  
  }
}

val NumParser = RegexParser("[0-9]+".r)
def StringParser(s: String) = RegexParser(Regex.quote(s).r)

NumParser.parse_all("12u345")
println(NumParser.parse_all("12u45"))


// convenience
implicit def string2parser(s: String) = StringParser(s)
implicit def char2parser(c: Char) = CharParser(c)

implicit def ParserOps[I<% Seq[_], T](p: Parser[I, T]) = new {
  def | (q : => Parser[I, T]) = new AltParser[I, T](p, q)
  def ==>[S] (f: => T => S) = new FunParser[I, T, S](p, f)
  def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q)
}

implicit def StringOps(s: String) = new {
  def | (q : => Parser[String, String]) = new AltParser[String, String](s, q)
  def | (r: String) = new AltParser[String, String](s, r)
  def ==>[S] (f: => String => S) = new FunParser[String, String, S](s, f)
  def ~[S] (q : => Parser[String, S]) = 
    new SeqParser[String, String, S](s, q)
  def ~ (r: String) = 
    new SeqParser[String, String, String](s, r)
}


val NumParserInt = NumParser ==> (s => 2 * s.toInt)

NumParser.parse_all("12345")
NumParserInt.parse_all("12345")
NumParserInt.parse_all("12u45")


// grammar for arithmetic expressions
//
//  E ::= T + E | T - E | T
//  T ::= F * T | F
//  F ::= ( E ) | Number


lazy val E: Parser[String, Int] = 
  (T ~ "+" ~ E) ==> { case ((x, y), z) => x + z } |
  (T ~ "-" ~ E) ==> { case ((x, y), z) => x - z } | T 
lazy val T: Parser[String, Int] = 
  (F ~ "*" ~ T) ==> { case ((x, y), z) => x * z } | F
lazy val F: Parser[String, Int] = 
  ("(" ~ E ~ ")") ==> { case ((x, y), z) => y } | NumParserInt


println(E.parse_all("4*2+3"))
println(E.parse_all("4*(2+3)"))
println(E.parse_all("(4)*((2+3))"))
println(E.parse_all("4/2+3"))
println(E.parse_all("(1+2)+3"))
println(E.parse_all("1+2+3")) 





// The End ... Almost Christmas
//===============================

// I hope you had fun!

// A function should do one thing, and only one thing.

// Make your variables immutable, unless there's a good 
// reason not to.

// I did it, but this is actually not a good reason:
// generating new labels:

var counter = -1

def Fresh(x: String) = {
  counter += 1
  x ++ "_" ++ counter.toString()
}

Fresh("x")
Fresh("x")



// You can be productive on Day 1, but the language is deep.
//
// http://scalapuzzlers.com
//
// http://www.latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/

List(1, 2, 3).contains("your mom")

// I like best about Scala that it lets me often write
// concise, readable code. And it hooks up with the 
// Isabelle theorem prover.