// Part 2 about Alcohol-Consumption Worldwide//============================================object CW6b {import io.Sourceimport scala.util._val url_alcohol = "https://raw.githubusercontent.com/fivethirtyeight/data/master/alcohol-consumption/drinks.csv"val file_population = "population.csv"//(1) Complete the get_csv_page function below. It takes a URL-string// as argument and generates a list of strings corresponding to each// line in the downloaded csv-list. The URL url_alcohol above is one// possible argument.//def get_csv_page(url: String) : List[String] = ...def get_csv_page(url: String) : List[String] = { val csv = Source.fromURL(url) val contents = csv.mkString.split("\n") contents.toList}// Complete the get_csv_file function below. It takes a file name// as argument and reads the content of the given file. Like above,// it should generate a list of strings corresponding to each// line in the csv-list. The filename file_population is one possible// argument.//def get_csv_file(file: String) : List[String] = ...def get_csv_file(file: String) : List[String] = { val csv = Source.fromFile(file) val contents = csv.mkString.split("\n") contents.toList}//(2) Complete the functions that process the csv-lists. For// process_alcs extract the country name (as String) and the// pure alcohol consumption (as Double). For process_pops// generate a Map of Strings (country names) to Long numbers// (population sizes).//def process_alcs(lines: List[String]) : List[(String, Double)] = ...def process_alcs(lines: List[String]) : List[(String, Double)] = { val beheaded = lines.drop(1) val splitEntries = for (n <- beheaded) yield n.split(",").toList for (n <- splitEntries) yield (n.take(1).mkString, n.drop(4).mkString.toDouble)}//def process_pops(lines: List[String]) : Map[String, Long] = ...def process_pops(lines: List[String]) : Map[String, Long] = { val beheaded = lines.drop(1); def toOnePair(line: String) : (String, Long) = { val splitAsList = line.split(",").toList (splitAsList.take(1).mkString, splitAsList.drop(1).mkString.toLong) } val splitEntries = for (n <- beheaded) yield toOnePair(n) splitEntries.toMap}//(3) Calculate for each country the overall alcohol_consumption using// the data from the alcohol list and the population sizes list. You// should only include countries on the alcohol list that are also// on the population sizes list with the exact same name. Note that// the spelling of some names in the alcohol list differs from the// population sizes list. You can ignore entries where the names differ.// Sort the resulting list according to the country with the highest alcohol// consumption to the country with the lowest alcohol consumption.//def sorted_country_consumption() : List[(String, Long)] = ...def sorted_country_consumption() : List[(String, Long)] = { val countryToPop = process_pops(get_csv_file(file_population)) val countryAndAlc = process_alcs(get_csv_page(url_alcohol)) val countryAndConsumption = countryAndAlc.collect { case oneCountryAndAlc if countryToPop.isDefinedAt(oneCountryAndAlc._1) => (oneCountryAndAlc._1, (oneCountryAndAlc._2*countryToPop.get(oneCountryAndAlc._1).get).toLong) } countryAndConsumption.sortWith(_._2 > _._2)}// Calculate the world consumption of pure alcohol of all countries, which// should be the first element in the tuple below. The second element is// the overall consumption of the first n countries in the sorted list// from above; and finally the double should be the percentage of the// first n countries drinking from the the world consumption of alcohol.//def percentage(n: Int) : (Long, Long, Double) = ...def percentage(n: Int) : (Long, Long, Double) = { val ctryConsump = sorted_country_consumption() val totalAlc = ctryConsump.map(_._2).sum val firstNAlc = ctryConsump.take(n).map(_._2).sum val pcntage = (firstNAlc*1.0/totalAlc)*100; (ctryConsump.map(_._2).sum, ctryConsump.take(n).map(_._2).sum, pcntage)}}