templates5/bfc.scala
author Christian Urban <urbanc@in.tum.de>
Wed, 24 Jul 2019 15:18:44 +0100
changeset 267 9e0216756771
parent 233 38ea26f227af
child 285 bd9d142d2cd8
permissions -rw-r--r--
updated myassert workaround

// Part 2 about a "Compiler" for the Brainf*** language
//======================================================

// !!! Copy any function you need from file bf.scala !!!
//
// If you need any auxiliary function, feel free to 
// implement it, but do not make any changes to the
// templates below.

def time_needed[T](n: Int, code: => T) = {
  val start = System.nanoTime()
  for (i <- 0 until n) code
  val end = System.nanoTime()
  (end - start)/(n * 1.0e9)
}

type Mem = Map[Int, Int]

import io.Source
import scala.util._

// !! COPY from your bf.scala !!

// def load_bff(name: String) : String = ...
  
// def sread(mem: Mem, mp: Int) : Int = ...

// def write(mem: Mem, mp: Int, v: Int) : Mem = ...

// def jumpRight(prog: String, pc: Int, level: Int) : Int = ...

// def jumpLeft(prog: String, pc: Int, level: Int) : Int = ...

// def compute(prog: String, pc: Int, mp: Int, mem: Mem) : Mem = ...

// def run(prog: String, m: Mem = Map()) = 

// The baseline to what we can compare our "compiler"
// implemented below. It should require something like 
// 60 seconds for the calculation on my laptop
//
//time_needed(1, run(load_bff("benchmark.bf")))


// DEBUGGING INFORMATION!!!
//
// Compiler, even real ones, are fiendishly difficult to get
// to produce correct code. The point is that for example for
// the Sierpinski program, they need to still generate code
// that displays such a triangle. If yes, then one usually
// can take comfort that all is well. If not, then something
// went wrong during the optimisations.


// ADVANCED TASKS
//================

// (5) Write a function jtable that precomputes the "jump
//     table" for a bf-program. This function takes a bf-program 
//     as an argument and Returns a Map[Int, Int]. The 
//     purpose of this map is to record the information
//     that given on the position pc is a '[' or a ']',
//     then to which pc-position do we need to jump next?
// 
//     For example for the program
//    
//       "+++++[->++++++++++<]>--<+++[->>++++++++++<<]>>++<<----------[+>.>.<+<]"
//
//     we obtain the map
//
//       Map(69 -> 61, 5 -> 20, 60 -> 70, 27 -> 44, 43 -> 28, 19 -> 6)
//  
//     This states that for the '[' on position 5, we need to
//     jump to position 20, which is just after the corresponding ']'.
//     Similarly, for the ']' on position 19, we need to jump to
//     position 6, which is just after the '[' on position 5, and so
//     on. The idea is to not calculate this information each time
//     we hit a bracket, but just look up this information in the 
//     jtable. You can use the jumpLeft and jumpRight functions
//     from Part 1 for calculating the jtable.
//
//     Then adapt the compute and run functions from Part 1 in order 
//     to take advantage of the information stored in the jtable. 
//     This means whenever jumpLeft and jumpRight was called previously,
//     you should look up the jump address in the jtable.
 

//def jtable(pg: String) : Map[Int, Int] = ...

// testcase
// jtable("""+++++[->++++++++++<]>--<+++[->>++++++++++<<]>>++<<----------[+>.>.<+<]""")
// =>  Map(69 -> 61, 5 -> 20, 60 -> 70, 27 -> 44, 43 -> 28, 19 -> 6)


//def compute2(pg: String, tb: Map[Int, Int], pc: Int, mp: Int, mem: Mem) : Mem = ...

//def run2(pg: String, m: Mem = Map()) = ... 


//testcase
//time_needed(1, run2(load_bff("benchmark.bf")))



// (6) Write a function optimise which deletes "dead code" (everything
// that is not a bf-command) and also replaces substrings of the form
// [-] by a new command 0. The idea is that the loop [-] just resets the
// memory at the current location to 0. In the compute3 and run3 functions
// below you implement this command by writing the number 0 to mem(mp), 
// that is write(mem, mp, 0). 
//
// The easiest way to modify a string in this way is to use the regular
// expression """[^<>+-.,\[\]]""", which recognises everything that is 
// not a bf-command and replace it by the empty string. Similarly the
// regular expression """\[-\]""" finds all occurrences of [-] and 
// by using the Scala method .replaceAll you can replace it with the 
// string "0" standing for the new bf-command.

//def optimise(s: String) : String = ...

//def compute3(pg: String, tb: Map[Int, Int], pc: Int, mp: Int, mem: Mem) : Mem = ...

//def run3(pg: String, m: Mem = Map()) = ...


// testcases

//optimise(load_bff("benchmark.bf"))          // should have inserted 0's
//optimise(load_bff("mandelbrot.bf")).length  // => 11203
 
//time_needed(1, run3(load_bff("benchmark.bf")))



// (7)  Write a function combine which replaces sequences
// of repeated increment and decrement commands by appropriate
// two-character commands. For example for sequences of +
//
//              orig bf-cmds  | replacement
//            ------------------------------
//              +             | +A 
//              ++            | +B
//              +++           | +C
//                            |
//              ...           |
//                            | 
//              +++....+++    | +Z
//                (where length = 26)
//
//  Similar for the bf-command -, > and <. All other commands should
//  be unaffected by this change.
//
//  Adapt the compute4 and run4 functions such that they can deal
//  appropriately with such two-character commands.


//def combine(s: String) : String = ...


// testcase
//combine(load_bff("benchmark.bf"))

//def compute4(pg: String, tb: Map[Int, Int], pc: Int, mp: Int, mem: Mem) : Mem = ...

// should call first optimise and then combine on the input string
//def run4(pg: String, m: Mem = Map()) = ...


// testcases
//combine(optimise(load_bff("benchmark.bf"))) // => """>A+B[<A+M>A-A]<A[[....."""

//time_needed(1, run4(load_bff("benchmark.bf")))

//time_needed(1, run(load_bff("sierpinski.bf"))) 
//time_needed(1, run4(load_bff("sierpinski.bf"))) 

//time_needed(1, run4(load_bff("mandelbrot.bf")))