// Part 2 about finding a single tour for a board
//================================================
object CW7b {
type Pos = (Int, Int) // a position on a chessboard
type Path = List[Pos] // a path...a list of positions
def print_board(dim: Int, path: Path) : Unit = {
println
for (i <- 0 until dim) {
for (j <- 0 until dim) {
print(f"${path.reverse.indexOf((i, j))}%3.0f ")
}
println
}
}
def add_pair(x: Pos)(y: Pos) : Pos =
(x._1 + y._1, x._2 + y._2)
def is_legal(dim: Int, path: Path)(x: Pos) : Boolean =
0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
def moves(x: Pos) : List[Pos] =
List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
(-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x))
def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] =
moves(x).filter(is_legal(dim, path))
def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = xs match {
case Nil => None
case x::xs => {
val result = f(x)
if (result.isDefined) result else first(xs, f)
}
}
//first(List((1, 0),(2, 0),(3, 0),(4, 0)), (x => if (x._1 > 3) Some(List(x)) else None))
//first(List((1, 0),(2, 0),(3, 0)), (x => if (x._1 > 3) Some(List(x)) else None))
def first_tour(dim: Int, path: Path) : Option[Path] = {
if (path.length == dim * dim) Some(path)
else
first(legal_moves(dim, path, path.head), (x: Pos) => first_tour(dim, x::path))
}
/*
val ts1 = first_tour(8, List((0, 0))).get
assert(correct_urban(8)(ts1) == true)
val ts2 = first_tour(4, List((0, 0)))
assert(ts2 == None)
print_board(8, first_tour(8, List((0, 0))).get)
*/
}