// Scala Lecture 3+ −
//=================+ −
+ −
// Pattern Matching+ −
//==================+ −
+ −
// A powerful tool which is supposed to come to Java in a few years+ −
// time (https://www.youtube.com/watch?v=oGll155-vuQ)...Scala already+ −
// has it for many years. Other functional languages have it already for+ −
// decades. I think I would be really upset if a programming language + −
// I have to use does not have pattern matching....its is just so + −
// useful. ;o)+ −
+ −
// The general schema:+ −
//+ −
// expression match {+ −
// case pattern1 => expression1+ −
// case pattern2 => expression2+ −
// ...+ −
// case patternN => expressionN+ −
// }+ −
+ −
+ −
// remember+ −
val lst = List(None, Some(1), Some(2), None, Some(3)).flatten+ −
+ −
+ −
def my_flatten(xs: List[Option[Int]]): List[Int] = {+ −
if (xs == Nil) Nil+ −
else if (xs.head == None) my_flatten(xs.tail)+ −
else xs.head.get :: my_flatten(xs.tail)+ −
}+ −
+ −
+ −
+ −
val lst = List(None, Some(1), Some(2), None, Some(3))+ −
+ −
def my_flatten(lst: List[Option[Int]]): List[Int] = lst match {+ −
case Nil => Nil+ −
case None::xs => my_flatten(xs)+ −
case Some(n)::xs => n::my_flatten(xs)+ −
}+ −
+ −
my_flatten(lst)+ −
+ −
Nil == List()+ −
+ −
+ −
// another example including a catch-all pattern+ −
def get_me_a_string(n: Int): String = n match {+ −
case 0 => "zero"+ −
case 1 => "one"+ −
case 2 => "two"+ −
case _ => "many"+ −
}+ −
+ −
get_me_a_string(10)+ −
+ −
// you can also have cases combined+ −
def season(month: String) = month match {+ −
case "March" | "April" | "May" => "It's spring"+ −
case "June" | "July" | "August" => "It's summer"+ −
case "September" | "October" | "November" => "It's autumn"+ −
case "December" | "January" | "February" => "It's winter"+ −
}+ −
+ −
println(season("November"))+ −
+ −
// What happens if no case matches?+ −
+ −
println(season("foobar"))+ −
+ −
+ −
// we can also match more complicated pattern+ −
//+ −
// let's look at the Collatz function on binary strings+ −
+ −
// adding two binary strings in a very, very lazy manner+ −
+ −
def badd(s1: String, s2: String) : String = + −
(BigInt(s1, 2) + BigInt(s2, 2)).toString(2)+ −
+ −
+ −
"111".dropRight(1)+ −
"111".last+ −
+ −
def bcollatz(s: String) : Long = (s.dropRight(1), s.last) match {+ −
case ("", '1') => 1 // we reached 1+ −
case (rest, '0') => 1 + bcollatz(rest) + −
// even number => divide by two+ −
case (rest, '1') => 1 + bcollatz(badd(s + '1', s))+ −
// odd number => s + '1' is 2 * s + 1+ −
// add another s gives 3 * s + 1 + −
} + −
+ −
bcollatz(6.toBinaryString)+ −
bcollatz(837799.toBinaryString)+ −
bcollatz(100000000000000000L.toBinaryString)+ −
bcollatz(BigInt("1000000000000000000000000000000000000000000000000000000000000000000000000000").toString(2))+ −
+ −
+ −
+ −
+ −
// User-defined Datatypes+ −
//========================+ −
+ −
abstract class Colour+ −
case object Red extends Colour + −
case object Green extends Colour + −
case object Blue extends Colour+ −
+ −
def fav_colour(c: Colour) : Boolean = c match {+ −
case Red => false+ −
case Green => true+ −
case Blue => false + −
}+ −
+ −
fav_colour(Green)+ −
+ −
+ −
// actually colors can be written with "object",+ −
// because they do not take any arguments+ −
+ −
+ −
// ... a bit more useful: Roman Numerals+ −
+ −
abstract class RomanDigit + −
case object I extends RomanDigit + −
case object V extends RomanDigit + −
case object X extends RomanDigit + −
case object L extends RomanDigit + −
case object C extends RomanDigit + −
case object D extends RomanDigit + −
case object M extends RomanDigit + −
+ −
type RomanNumeral = List[RomanDigit] + −
+ −
def RomanNumeral2Int(rs: RomanNumeral): Int = rs match { + −
case Nil => 0+ −
case M::r => 1000 + RomanNumeral2Int(r) + −
case C::M::r => 900 + RomanNumeral2Int(r)+ −
case D::r => 500 + RomanNumeral2Int(r)+ −
case C::D::r => 400 + RomanNumeral2Int(r)+ −
case C::r => 100 + RomanNumeral2Int(r)+ −
case X::C::r => 90 + RomanNumeral2Int(r)+ −
case L::r => 50 + RomanNumeral2Int(r)+ −
case X::L::r => 40 + RomanNumeral2Int(r)+ −
case X::r => 10 + RomanNumeral2Int(r)+ −
case I::X::r => 9 + RomanNumeral2Int(r)+ −
case V::r => 5 + RomanNumeral2Int(r)+ −
case I::V::r => 4 + RomanNumeral2Int(r)+ −
case I::r => 1 + RomanNumeral2Int(r)+ −
}+ −
+ −
RomanNumeral2Int(List(I,V)) // 4+ −
RomanNumeral2Int(List(I,I,I,I)) // 4 (invalid Roman number)+ −
RomanNumeral2Int(List(V,I)) // 6+ −
RomanNumeral2Int(List(I,X)) // 9+ −
RomanNumeral2Int(List(M,C,M,L,X,X,I,X)) // 1979+ −
RomanNumeral2Int(List(M,M,X,V,I,I)) // 2017+ −
+ −
+ −
+ −
// another example+ −
//=================+ −
+ −
// Once upon a time, in a complete fictional country there were Persons...+ −
+ −
abstract class Person+ −
case object King extends Person+ −
case class Peer(deg: String, terr: String, succ: Int) extends Person+ −
case class Knight(name: String) extends Person+ −
case class Peasant(name: String) extends Person+ −
case object Clown extends Person+ −
+ −
def title(p: Person): String = p match {+ −
case King => "His Majesty the King"+ −
case Peer(deg, terr, _) => s"The ${deg} of ${terr}"+ −
case Knight(name) => s"Sir ${name}"+ −
case Peasant(name) => name+ −
case Clown => "My name is Boris Johnson"+ −
+ −
}+ −
+ −
title(Clown)+ −
+ −
+ −
+ −
def superior(p1: Person, p2: Person): Boolean = (p1, p2) match {+ −
case (King, _) => true+ −
case (Peer(_,_,_), Knight(_)) => true+ −
case (Peer(_,_,_), Peasant(_)) => true+ −
case (Peer(_,_,_), Clown) => true+ −
case (Knight(_), Peasant(_)) => true+ −
case (Knight(_), Clown) => true+ −
case (Clown, Peasant(_)) => true+ −
case _ => false+ −
}+ −
+ −
val people = List(Knight("David"), + −
Peer("Duke", "Norfolk", 84), + −
Peasant("Christian"), + −
King, + −
Clown)+ −
+ −
println(people.sortWith(superior(_, _)).mkString(", "))+ −
+ −
+ −
+ −
+ −
// Tail recursion+ −
//================+ −
+ −
+ −
def fact(n: Long): Long = + −
if (n == 0) 1 else n * fact(n - 1)+ −
+ −
fact(10) //ok+ −
fact(10000) // produces a stackoverflow+ −
+ −
def factT(n: BigInt, acc: BigInt): BigInt =+ −
if (n == 0) acc else factT(n - 1, n * acc)+ −
+ −
factT(10, 1)+ −
factT(100000, 1)+ −
+ −
// there is a flag for ensuring a function is tail recursive+ −
import scala.annotation.tailrec+ −
+ −
@tailrec+ −
def factT(n: BigInt, acc: BigInt): BigInt =+ −
if (n == 0) acc else factT(n - 1, n * acc)+ −
+ −
+ −
+ −
// for tail-recursive functions the Scala compiler+ −
// generates loop-like code, which does not need+ −
// to allocate stack-space in each recursive+ −
// call; Scala can do this only for tail-recursive+ −
// functions+ −
+ −
+ −
+ −
// sudoku again+ −
+ −
val game0 = """.14.6.3..+ −
|62...4..9+ −
|.8..5.6..+ −
|.6.2....3+ −
|.7..1..5.+ −
|5....9.6.+ −
|..6.2..3.+ −
|1..5...92+ −
|..7.9.41.""".stripMargin.replaceAll("\\n", "")+ −
+ −
type Pos = (Int, Int)+ −
val EmptyValue = '.'+ −
val MaxValue = 9+ −
+ −
val allValues = "123456789".toList+ −
val indexes = (0 to 8).toList+ −
+ −
+ −
def empty(game: String) = game.indexOf(EmptyValue)+ −
def isDone(game: String) = empty(game) == -1 + −
def emptyPosition(game: String) = + −
(empty(game) % MaxValue, empty(game) / MaxValue)+ −
+ −
+ −
def get_row(game: String, y: Int) = + −
indexes.map(col => game(y * MaxValue + col))+ −
def get_col(game: String, x: Int) = + −
indexes.map(row => game(x + row * MaxValue))+ −
+ −
def get_box(game: String, pos: Pos): List[Char] = {+ −
def base(p: Int): Int = (p / 3) * 3+ −
val x0 = base(pos._1)+ −
val y0 = base(pos._2)+ −
val ys = (y0 until y0 + 3).toList+ −
(x0 until x0 + 3).toList.flatMap(x => ys.map(y => game(x + y * MaxValue)))+ −
}+ −
+ −
// this is not mutable!!+ −
def update(game: String, pos: Int, value: Char): String = + −
game.updated(pos, value)+ −
+ −
def toAvoid(game: String, pos: Pos): List[Char] = + −
(get_col(game, pos._1) ++ get_row(game, pos._2) ++ get_box(game, pos))+ −
+ −
def candidates(game: String, pos: Pos): List[Char] = + −
allValues.diff(toAvoid(game,pos))+ −
+ −
//candidates(game0, (0,0))+ −
+ −
def pretty(game: String): String = + −
"\n" + (game sliding (MaxValue, MaxValue) mkString "\n")+ −
+ −
/////////////////////+ −
// not tail recursive + −
def search(game: String): List[String] = {+ −
if (isDone(game)) List(game)+ −
else {+ −
val cs = candidates(game, emptyPosition(game))+ −
cs.map(c => search(update(game, empty(game), c))).toList.flatten+ −
}+ −
}+ −
+ −
// tail recursive version that searches + −
// for all solutions+ −
+ −
def searchT(games: List[String], sols: List[String]): List[String] = games match {+ −
case Nil => sols+ −
case game::rest => {+ −
if (isDone(game)) searchT(rest, game::sols)+ −
else {+ −
val cs = candidates(game, emptyPosition(game))+ −
searchT(cs.map(c => update(game, empty(game), c)) ::: rest, sols)+ −
}+ −
}+ −
}+ −
+ −
searchT(List(game3), List()).map(pretty)+ −
+ −
+ −
// tail recursive version that searches + −
// for a single solution+ −
+ −
def search1T(games: List[String]): Option[String] = games match {+ −
case Nil => None+ −
case game::rest => {+ −
if (isDone(game)) Some(game)+ −
else {+ −
val cs = candidates(game, emptyPosition(game))+ −
search1T(cs.map(c => update(game, empty(game), c)) ::: rest)+ −
}+ −
}+ −
}+ −
+ −
search1T(List(game3)).map(pretty)+ −
+ −
// game with multiple solutions+ −
val game3 = """.8...9743+ −
|.5...8.1.+ −
|.1.......+ −
|8....5...+ −
|...8.4...+ −
|...3....6+ −
|.......7.+ −
|.3.5...8.+ −
|9724...5.""".stripMargin.replaceAll("\\n", "")+ −
+ −
searchT(List(game3), Nil).map(pretty)+ −
search1T(List(game3)).map(pretty)+ −
+ −
// Moral: Whenever a recursive function is resource-critical+ −
// (i.e. works with large recursion depth), then you need to+ −
// write it in tail-recursive fashion.+ −
// + −
// Unfortuantely, Scala because of current limitations in + −
// the JVM is not as clever as other functional languages. It can + −
// only optimise "self-tail calls". This excludes the cases of + −
// multiple functions making tail calls to each other. Well,+ −
// nothing is perfect. + −
+ −
+ −
+ −
+ −
// Polymorphic Types+ −
//===================+ −
+ −
// You do not want to write functions like contains, first + −
// and so on for every type of lists.+ −
+ −
+ −
def length_string_list(lst: List[String]): Int = lst match {+ −
case Nil => 0+ −
case x::xs => 1 + length_string_list(xs)+ −
}+ −
+ −
def length_int_list(lst: List[Int]): Int = lst match {+ −
case Nil => 0+ −
case x::xs => 1 + length_int_list(xs)+ −
}+ −
+ −
length_string_list(List("1", "2", "3", "4"))+ −
length_int_list(List(1, 2, 3, 4))+ −
+ −
//-----+ −
def length[A](lst: List[A]): Int = lst match {+ −
case Nil => 0+ −
case x::xs => 1 + length(xs)+ −
}+ −
length(List("1", "2", "3", "4"))+ −
length(List(King, Knight("foo"), Clown))+ −
length(List(1, 2, 3, 4))+ −
+ −
def map[A, B](lst: List[A], f: A => B): List[B] = lst match {+ −
case Nil => Nil+ −
case x::xs => f(x)::map_int_list(xs, f) + −
}+ −
+ −
map_int_list(List(1, 2, 3, 4), square)+ −
+ −
+ −
// Remember?+ −
def first[A, B](xs: List[A], f: A => Option[B]): Option[B] = ...+ −
+ −
+ −
+ −
+ −
+ −
// Cool Stuff+ −
//============+ −
+ −
+ −
// Implicits + −
//===========+ −
//+ −
// For example adding your own methods to Strings:+ −
// Imagine you want to increment strings, like+ −
//+ −
// "HAL".increment+ −
//+ −
// you can avoid ugly fudges, like a MyString, by+ −
// using implicit conversions.+ −
+ −
+ −
implicit class MyString(s: String) {+ −
def increment = for (c <- s) yield (c + 1).toChar + −
}+ −
+ −
"HAL".increment+ −
+ −
+ −
+ −
+ −
// Regular expressions - the power of DSLs in Scala+ −
//==================================================+ −
+ −
abstract class Rexp+ −
case object ZERO extends Rexp // nothing+ −
case object ONE extends Rexp // the empty string+ −
case class CHAR(c: Char) extends Rexp // a character c+ −
case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative r1 + r2+ −
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence r1 o r2 + −
case class STAR(r: Rexp) extends Rexp // star r*+ −
+ −
+ −
+ −
// (ab)*+ −
val r0 = STAR(SEQ(CHAR('a'), CHAR('b')))+ −
+ −
+ −
// some convenience for typing in regular expressions+ −
import scala.language.implicitConversions + −
import scala.language.reflectiveCalls + −
+ −
def charlist2rexp(s: List[Char]): Rexp = s match {+ −
case Nil => ONE+ −
case c::Nil => CHAR(c)+ −
case c::s => SEQ(CHAR(c), charlist2rexp(s))+ −
}+ −
implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)+ −
+ −
+ −
val r1 = STAR("ab")+ −
val r2 = STAR(ALT("ab"))+ −
val r3 = STAR(ALT("ab", "baa baa black sheep"))+ −
+ −
implicit def RexpOps (r: Rexp) = new {+ −
def | (s: Rexp) = ALT(r, s)+ −
def % = STAR(r)+ −
def ~ (s: Rexp) = SEQ(r, s)+ −
}+ −
+ −
implicit def stringOps (s: String) = new {+ −
def | (r: Rexp) = ALT(s, r)+ −
def | (r: String) = ALT(s, r)+ −
def % = STAR(s)+ −
def ~ (r: Rexp) = SEQ(s, r)+ −
def ~ (r: String) = SEQ(s, r)+ −
}+ −
+ −
//example regular expressions+ −
val digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"+ −
val sign = "+" | "-" | ""+ −
val number = sign ~ digit ~ digit.% + −
+ −
+ −
+ −
+ −
+ −
// The End+ −
//=========+ −
+ −
// A function should do one thing, and only one thing.+ −
+ −
// Make your variables immutable, unless there's a good + −
// reason not to.+ −
+ −
// You can be productive on Day 1, but the language is deep.+ −
//+ −
// http://scalapuzzlers.com+ −
//+ −
// http://www.latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/+ −
+ −
List(1, 2, 3) contains "your mom"+ −
+ −
// I like best about Scala that it lets me often write+ −
// concise, readable code.+ −
+ −