// Scala Lecture 2
//=================
// the pain with overloaded math operations
(100 / 4)
(100 / 3)
(100.toDouble / 3.toDouble)
// For-Comprehensions again
//==========================
def square(n: Int) : Int = n * n
for (n <- (1 to 10).toList) yield {
val res = square(n)
res
}
// like in functions, the "last" item inside the yield
// will be returned; the last item is not necessarily
// the last line
for (n <- (1 to 10).toList) yield {
if (n % 2 == 0) n
else square(n)
}
// ...please, please do not write:
val lst = List(1, 2, 3, 4, 5, 6, 7, 8, 9)
for (i <- (0 until lst.length).toList) yield square(lst(i))
// this is just so prone to off-by-one errors;
// write instead
for (e <- lst; if (e % 2) == 0; if (e != 4)) yield square(e)
//this works for sets as well
val st = Set(1, 2, 3, 4, 5, 6, 7, 8, 9)
for (e <- st) yield {
if (e < 5) e else square(e)
}
// Side-Effects
//==============
// with only a side-effect (no list is produced),
// for has no "yield"
for (n <- (1 to 10)) println(n)
for (n <- (1 to 10)) {
print("The number is: ")
print(n)
print("\n")
}
// know when to use yield and when not:
val test =
for (e <- Set(1, 2, 3, 4, 5, 6, 7, 8, 9); if e < 5) yield square(e)
// Option type
//=============
//in Java, if something unusually happens, you return null;
//in Scala you use Option
// - if the value is present, you use Some(value)
// - if no value is present, you use None
List(7,24,3,4,5,6).find(_ < 4)
List(5,6,7,8,9).find(_ < 4)
List(7,2,3,4,5,6).filter(_ < 4)
// some operations on Option's
val lst = List(None, Some(1), Some(2), None, Some(3))
lst.flatten
Some(10).get
None.get
Some(1).isDefined
None.isDefined
val ps = List((3, 0), (3, 2), (4, 2), (2, 0), (1, 0), (1, 1))
for ((x, y) <- ps) yield {
if (y == 0) None else Some(x / y)
}
// use .getOrElse is for setting a default value
val lst = List(None, Some(1), Some(2), None, Some(3))
for (x <- lst) yield x.getOrElse(0)
// error handling with Options (no exceptions)
//
// Try(....)
//
// Try(something).getOrElse(what_to_do_in_an_exception)
//
import scala.util._
Try(1 + 3)
Try(9 / 0)
Try(9 / 3).getOrElse(42)
Try(9 / 0).getOrElse(42)
import io.Source
val my_url = """https://nms.kcl.ac.uk/christian.urban"""
//val my_url = """https://nms.kcl.ac.uk/christan.urban""" // misspelled
Source.fromURL(my_url).mkString
Try(Source.fromURL(my_url).mkString).getOrElse("")
Try(Some(Source.fromURL(my_url).mkString)).getOrElse(None)
// a function that turns strings into numbers
Integer.parseInt("1234")
def get_me_an_int(s: String): Option[Int] =
Try(Some(Integer.parseInt(s))).getOrElse(None)
val lst = List("12345", "foo", "5432", "bar", "x21")
for (x <- lst) yield get_me_an_int(x)
// summing all the numbers
val sum = (for (i <- lst) yield get_me_an_int(i)).flatten.sum
// This may not look any better than working with null in Java, but to
// see the value, you have to put yourself in the shoes of the
// consumer of the get_me_an_int function, and imagine you didn't
// write that function.
//
// In Java, if you didn't write this function, you'd have to depend on
// the Javadoc of get_me_an_int. If you didn't look at the Javadoc,
// you might not know that get_me_an_int could return a null, and your
// code could potentially throw a NullPointerException.
// even Scala is not immune to problems like this:
List(5,6,7,8,9).indexOf(42)
// ... how are we supposed to know that this returns -1
// Higher-Order Functions
//========================
// functions can take functions as arguments
val lst = (1 to 10).toList
def even(x: Int) : Boolean = x % 2 == 0
def odd(x: Int) : Boolean = x % 2 == 1
lst.filter(x => even(x) && odd(x))
lst.filter(even(_))
lst.filter(odd && even)
lst.find(_ > 8)
// map applies a function to each element of a list
def square(x: Int): Int = x * x
val lst = (1 to 10).toList
lst.map(square)
lst.map(square).filter(_ > 4)
lst.map(square).filter(_ > 4).map(square)
// map works for most collection types, including sets
Set(1, 3, 6).map(square).filter(_ > 4)
val l = List((1, 3),(2, 4),(4, 1),(6, 2))
l.map(square(_._1))
// Why are functions as arguments useful?
//
// Consider the sum between a and b:
def sumInts(a: Int, b: Int) : Int =
if (a > b) 0 else a + sumInts(a + 1, b)
sumInts(10, 16)
// sum squares
def square(n: Int) : Int = n * n
def sumSquares(a: Int, b: Int) : Int =
if (a > b) 0 else square(a) + sumSquares(a + 1, b)
sumSquares(2, 6)
// sum factorials
def fact(n: Int) : Int =
if (n == 0) 1 else n * fact(n - 1)
def sumFacts(a: Int, b: Int) : Int =
if (a > b) 0 else fact(a) + sumFacts(a + 1, b)
sumFacts(2, 6)
// You can see the pattern....can we simplify our work?
// The type of functions from ints to ints: Int => Int
def sum(f: Int => Int, a: Int, b: Int) : Int = {
if (a > b) 0
else f(a) + sum(f, a + 1, b)
}
def sumSquares(a: Int, b: Int) : Int = sum(square, a, b)
def sumFacts(a: Int, b: Int) : Int = sum(fact, a, b)
// What should we do for sumInts?
def id(n: Int) : Int = n
def sumInts(a: Int, b: Int) : Int = sum(id, a, b)
sumInts(10, 12)
// Anonymous Functions: You can also write:
def sumCubes(a: Int, b: Int) : Int = sum(x => x * x * x, a, b)
def sumSquares(a: Int, b: Int) : Int = sum(x => x * x, a, b)
def sumInts(a: Int, b: Int) : Int = sum(x => x, a, b)
// other function types
//
// f1: (Int, Int) => Int
// f2: List[String] => Option[Int]
// ...
// an aside: partial application
def add(a: Int)(b: Int) : Int = a + b
def add_abc(a: Int)(b: Int)(c: Int) : Int = a + b + c
val add2 : Int => Int = add(2)
add2(5)
val add2_bc : Int => Int => Int = add_abc(2)
val add2_9_c : Int => Int = add2_bc(9)
add2_9_c(10)
sum(add(2), 0, 2)
sum(add(10), 0, 2)
// Function Composition
//======================
// How can be Higher-Order Functions and Options be helpful?
def add_footer(msg: String) : String = msg ++ " - Sent from iOS"
def valid_msg(msg: String) : Boolean = msg.size <= 140
def duplicate(s: String) : String = s ++ s
// they compose very nicely, e.g
valid_msg(add_footer("Hello World"))
valid_msg(duplicate(duplicate(add_footer("Helloooooooooooooooooo World"))))
// but not all functions do
// first_word: let's first do it the ugly Java way using null:
def first_word(msg: String) : String = {
val words = msg.split(" ")
if (words(0) != "") words(0) else null
}
duplicate(first_word("Hello World"))
duplicate(first_word(""))
def extended_duplicate(s: String) : String =
if (s != null) s ++ s else null
extended_duplicate(first_word(""))
// but this is against the rules of the game: we do not want
// to change duplicate, because first_word might return null
// Avoid always null!
def better_first_word(msg: String) : Option[String] = {
val words = msg.split(" ")
if (words(0) != "") Some(words(0)) else None
}
better_first_word("Hello World").map(duplicate)
better_first_word("Hello World").map(duplicate)
better_first_word("").map(duplicate).map(duplicate).map(valid_msg)
better_first_word("").map(duplicate)
better_first_word("").map(duplicate).map(valid_msg)
// Problems with mutability and parallel computations
//====================================================
def count_intersection(A: Set[Int], B: Set[Int]) : Int = {
var count = 0
for (x <- A; if (B contains x)) count += 1
count
}
val A = (1 to 1000).toSet
val B = (1 to 1000 by 4).toSet
count_intersection(A, B)
// but do not try to add .par to the for-loop above,
// otherwise you will be caught in race-condition hell.
//propper parallel version
def count_intersection2(A: Set[Int], B: Set[Int]) : Int =
A.par.count(x => B contains x)
count_intersection2(A, B)
//for measuring time
def time_needed[T](n: Int, code: => T) = {
val start = System.nanoTime()
for (i <- (0 to n)) code
val end = System.nanoTime()
(end - start) / 1.0e9
}
val A = (1 to 1000000).toSet
val B = (1 to 1000000 by 4).toSet
time_needed(10, count_intersection(A, B))
time_needed(10, count_intersection2(A, B))
// No returns in Scala
//====================
// You should not use "return" in Scala:
//
// A return expression, when evaluated, abandons the
// current computation and returns to the caller of the
// function in which return appears."
def sq1(x: Int): Int = x * x
def sq2(x: Int): Int = return x * x
def sumq(ls: List[Int]): Int = {
ls.map(sq1).sum[Int]
}
sumq(List(1, 2, 3, 4))
def sumq(ls: List[Int]): Int = {
val sqs : List[Int] = for (x <- ls) yield (return x * x)
sqs.sum
}
// Type abbreviations
//====================
// some syntactic convenience
type Pos = (int, Int)
type Board = List[List[Int]]
// Sudoku in Scala
//=================
// THE POINT OF THIS CODE IS NOT TO BE SUPER
// EFFICIENT AND FAST, just explaining exhaustive
// depth-first search
val game0 = """.14.6.3..
|62...4..9
|.8..5.6..
|.6.2....3
|.7..1..5.
|5....9.6.
|..6.2..3.
|1..5...92
|..7.9.41.""".stripMargin.replaceAll("\\n", "")
type Pos = (Int, Int)
val EmptyValue = '.'
val MaxValue = 9
val allValues = "123456789".toList
val indexes = (0 to 8).toList
def empty(game: String) = game.indexOf(EmptyValue)
def isDone(game: String) = empty(game) == -1
def emptyPosition(game: String) =
(empty(game) % MaxValue, empty(game) / MaxValue)
def get_row(game: String, y: Int) =
indexes.map(col => game(y * MaxValue + col))
def get_col(game: String, x: Int) =
indexes.map(row => game(x + row * MaxValue))
get_row(game0, 3)
get_col(game0, 0)
def get_box(game: String, pos: Pos): List[Char] = {
def base(p: Int): Int = (p / 3) * 3
val x0 = base(pos._1)
val y0 = base(pos._2)
val ys = (y0 until y0 + 3).toList
(x0 until x0 + 3).toList.flatMap(x => ys.map(y => game(x + y * MaxValue)))
}
get_box(game0, (0, 0))
get_box(game0, (1, 1))
get_box(game0, (2, 1))
// this is not mutable!!
def update(game: String, pos: Int, value: Char): String =
game.updated(pos, value)
def toAvoid(game: String, pos: Pos): List[Char] =
(get_col(game, pos._1) ++ get_row(game, pos._2) ++ get_box(game, pos))
def candidates(game: String, pos: Pos): List[Char] =
allValues.diff(toAvoid(game,pos))
//candidates(game0, (0,0))
def pretty(game: String): String =
"\n" + (game sliding (MaxValue, MaxValue) mkString "\n")
def search(game: String): List[String] = {
if (isDone(game)) List(game)
else {
val cs = candidates(game, emptyPosition(game))
cs.par.map(c => search(update(game, empty(game), c))).toList.flatten
}
}
search(game0).map(pretty)
val game1 = """23.915...
|...2..54.
|6.7......
|..1.....9
|89.5.3.17
|5.....6..
|......9.5
|.16..7...
|...329..1""".stripMargin.replaceAll("\\n", "")
search(game1).map(pretty)
// game that is in the hard(er) category
val game2 = """8........
|..36.....
|.7..9.2..
|.5...7...
|....457..
|...1...3.
|..1....68
|..85...1.
|.9....4..""".stripMargin.replaceAll("\\n", "")
// game with multiple solutions
val game3 = """.8...9743
|.5...8.1.
|.1.......
|8....5...
|...8.4...
|...3....6
|.......7.
|.3.5...8.
|9724...5.""".stripMargin.replaceAll("\\n", "")
search(game2).map(pretty)
search(game3).map(pretty)
// for measuring time
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
((end - start) / i / 1.0e9) + " secs"
}
search(game2).map(pretty)
search(game3).distinct.length
time_needed(1, search(game2))
time_needed(1, search(game3))
//===================
// the end for today