// Scala Lecture 3
//=================
// naive quicksort with "On" function
def sortOn(f: Int => Int, xs: List[Int]) : List[Int] = {
if (xs.size < 2) xs
else {
val pivot = xs.head
val (left, right) = xs.partition(f(_) < f(pivot))
sortOn(f, left) ::: pivot :: sortOn(f, right.tail)
}
}
sortOn(identity, List(99,99,99,98,10,-3,2))
sortOn(n => - n, List(99,99,99,98,10,-3,2))
// Recursion Again ;o)
//====================
// another well-known example: Towers of Hanoi
//=============================================
def move(from: Char, to: Char) =
println(s"Move disc from $from to $to!")
def hanoi(n: Int, from: Char, via: Char, to: Char) : Unit = {
if (n == 0) ()
else {
hanoi(n - 1, from, to, via)
move(from, to)
hanoi(n - 1, via, from, to)
}
}
hanoi(4, 'A', 'B', 'C')
// User-defined Datatypes
//========================
abstract class Tree
case class Leaf(x: Int) extends Tree
case class Node(s: String, left: Tree, right: Tree) extends Tree
val lf = Leaf(20)
val tr = Node("foo", Leaf(10), Leaf(23))
val lst : List[Tree] = List(lf, tr)
abstract class Colour
case object Red extends Colour
case object Green extends Colour
case object Blue extends Colour
case object Yellow extends Colour
def fav_colour(c: Colour) : Boolean = c match {
case Green => true
case _ => false
}
fav_colour(Blue)
// ... a tiny bit more useful: Roman Numerals
sealed abstract class RomanDigit
case object I extends RomanDigit
case object V extends RomanDigit
case object X extends RomanDigit
case object L extends RomanDigit
case object C extends RomanDigit
case object D extends RomanDigit
case object M extends RomanDigit
type RomanNumeral = List[RomanDigit]
List(X,I,M,A)
/*
I -> 1
II -> 2
III -> 3
IV -> 4
V -> 5
VI -> 6
VII -> 7
VIII -> 8
IX -> 9
X -> 10
*/
def RomanNumeral2Int(rs: RomanNumeral): Int = rs match {
case Nil => 0
case M::r => 1000 + RomanNumeral2Int(r)
case C::M::r => 900 + RomanNumeral2Int(r)
case D::r => 500 + RomanNumeral2Int(r)
case C::D::r => 400 + RomanNumeral2Int(r)
case C::r => 100 + RomanNumeral2Int(r)
case X::C::r => 90 + RomanNumeral2Int(r)
case L::r => 50 + RomanNumeral2Int(r)
case X::L::r => 40 + RomanNumeral2Int(r)
case X::r => 10 + RomanNumeral2Int(r)
case I::X::r => 9 + RomanNumeral2Int(r)
case V::r => 5 + RomanNumeral2Int(r)
case I::V::r => 4 + RomanNumeral2Int(r)
case I::r => 1 + RomanNumeral2Int(r)
}
RomanNumeral2Int(List(I,V)) // 4
RomanNumeral2Int(List(I,I,I,I)) // 4 (invalid Roman number)
RomanNumeral2Int(List(V,I)) // 6
RomanNumeral2Int(List(I,X)) // 9
RomanNumeral2Int(List(M,C,M,L,X,X,I,X)) // 1979
RomanNumeral2Int(List(M,M,X,V,I,I)) // 2017
// expressions (essentially trees)
abstract class Exp
case class N(n: Int) extends Exp // for numbers
case class Plus(e1: Exp, e2: Exp) extends Exp
case class Times(e1: Exp, e2: Exp) extends Exp
def string(e: Exp) : String = e match {
case N(n) => s"$n"
case Plus(e1, e2) => s"(${string(e1)} + ${string(e2)})"
case Times(e1, e2) => s"(${string(e1)} * ${string(e2)})"
}
val e = Plus(N(9), Times(N(3), N(4)))
e.toString
println(string(e))
def eval(e: Exp) : Int = e match {
case N(n) => n
case Plus(e1, e2) => eval(e1) + eval(e2)
case Times(e1, e2) => eval(e1) * eval(e2)
}
println(eval(e))
// simplification rules:
// e + 0, 0 + e => e
// e * 0, 0 * e => 0
// e * 1, 1 * e => e
//
// (....9 ....)
def simp(e: Exp) : Exp = e match {
case N(n) => N(n)
case Plus(e1, e2) => (simp(e1), simp(e2)) match {
case (N(0), e2s) => e2s
case (e1s, N(0)) => e1s
case (e1s, e2s) => Plus(e1s, e2s)
}
case Times(e1, e2) => (simp(e1), simp(e2)) match {
case (N(0), _) => N(0)
case (_, N(0)) => N(0)
case (N(1), e2s) => e2s
case (e1s, N(1)) => e1s
case (e1s, e2s) => Times(e1s, e2s)
}
}
val e2 = Times(Plus(N(0), N(1)), Plus(N(0), N(9)))
println(string(e2))
println(string(simp(e2)))
// String interpolations as patterns
val date = "2019-11-26"
val s"$year-$month-$day" = date
def parse_date(date: String) : Option[(Int, Int, Int)]= date match {
case s"$year-$month-$day" => Some((day.toInt, month.toInt, year.toInt))
case s"$day/$month/$year" => Some((day.toInt, month.toInt, year.toInt))
case s"$day.$month.$year" => Some((day.toInt, month.toInt, year.toInt))
case _ => None
}
parse_date("2019-11-26")
parse_date("26/11/2019")
parse_date("26.11.2019")
// guards in pattern-matching
def foo(xs: List[Int]) : String = xs match {
case Nil => s"this list is empty"
case x :: xs if x % 2 == 0
=> s"the first elemnt is even"
case x :: y :: rest if x == y
=> s"this has two elemnts that are the same"
case hd :: tl => s"this list is standard $hd::$tl"
}
foo(Nil)
foo(List(1,2,3))
foo(List(1,2))
foo(List(1,1,2,3))
foo(List(2,2,2,3))
// Tail recursion
//================
def fact(n: Long): Long =
if (n == 0) 1 else n * fact(n - 1)
def factB(n: BigInt): BigInt =
if (n == 0) 1 else n * factB(n - 1)
factB(100000)
fact(10) //ok
fact(10000) // produces a stackoverflow
def factT(n: BigInt, acc: BigInt): BigInt =
if (n == 0) acc else factT(n - 1, n * acc)
factT(10, 1)
println(factT(100000, 1))
// there is a flag for ensuring a function is tail recursive
import scala.annotation.tailrec
@tailrec
def factT(n: BigInt, acc: BigInt): BigInt =
if (n == 0) acc else factT(n - 1, n * acc)
// for tail-recursive functions the Scala compiler
// generates loop-like code, which does not need
// to allocate stack-space in each recursive
// call; Scala can do this only for tail-recursive
// functions
// Sudoku
//========
type Pos = (Int, Int)
val emptyValue = '.'
val maxValue = 9
val allValues = "123456789".toList
val indexes = (0 to 8).toList
def empty(game: String) = game.indexOf(emptyValue)
def isDone(game: String) = empty(game) == -1
def emptyPosition(game: String) : Pos =
(empty(game) % maxValue, empty(game) / maxValue)
def get_row(game: String, y: Int) = indexes.map(col => game(y * maxValue + col))
def get_col(game: String, x: Int) = indexes.map(row => game(x + row * maxValue))
def get_box(game: String, pos: Pos): List[Char] = {
def base(p: Int): Int = (p / 3) * 3
val x0 = base(pos._1)
val y0 = base(pos._2)
for (x <- (x0 until x0 + 3).toList;
y <- (y0 until y0 + 3).toList) yield game(x + y * maxValue)
}
def update(game: String, pos: Int, value: Char): String =
game.updated(pos, value)
def toAvoid(game: String, pos: Pos): List[Char] =
(get_col(game, pos._1) ++ get_row(game, pos._2) ++ get_box(game, pos))
def candidates(game: String, pos: Pos): List[Char] =
allValues.diff(toAvoid(game, pos))
def search(game: String): List[String] = {
if (isDone(game)) List(game)
else
candidates(game, emptyPosition(game)).par.
map(c => search(update(game, empty(game), c))).toList.flatten
}
def search1T(games: List[String]): Option[String] = games match {
case Nil => None
case game::rest => {
if (isDone(game)) Some(game)
else {
val cs = candidates(game, emptyPosition(game))
search1T(cs.map(c => update(game, empty(game), c)) ::: rest)
}
}
}
def pretty(game: String): String =
"\n" + (game.sliding(maxValue, maxValue).mkString(",\n"))
// tail recursive version that searches
// for all solutions
def searchT(games: List[String], sols: List[String]): List[String] = games match {
case Nil => sols
case game::rest => {
if (isDone(game)) searchT(rest, game::sols)
else {
val cs = candidates(game, emptyPosition(game))
searchT(cs.map(c => update(game, empty(game), c)) ::: rest, sols)
}
}
}
searchT(List(game3), List()).map(pretty)
// tail recursive version that searches
// for a single solution
def search1T(games: List[String]): Option[String] = games match {
case Nil => None
case game::rest => {
if (isDone(game)) Some(game)
else {
val cs = candidates(game, emptyPosition(game))
search1T(cs.map(c => update(game, empty(game), c)) ::: rest)
}
}
}
search1T(List(game3)).map(pretty)
time_needed(10, search1T(List(game3)))
// game with multiple solutions
val game3 = """.8...9743
|.5...8.1.
|.1.......
|8....5...
|...8.4...
|...3....6
|.......7.
|.3.5...8.
|9724...5.""".stripMargin.replaceAll("\\n", "")
searchT(List(game3), Nil).map(pretty)
search1T(List(game3)).map(pretty)
// Moral: Whenever a recursive function is resource-critical
// (i.e. works with large recursion depth), then you need to
// write it in tail-recursive fashion.
//
// Unfortuantely, Scala because of current limitations in
// the JVM is not as clever as other functional languages. It can
// only optimise "self-tail calls". This excludes the cases of
// multiple functions making tail calls to each other. Well,
// nothing is perfect.