progs/lecture3.scala
author Christian Urban <urbanc@in.tum.de>
Thu, 24 Nov 2016 09:42:49 +0000
changeset 68 8da9e0c16194
parent 67 ca5884c2e3bd
child 71 19dff7218b0d
permissions -rw-r--r--
updated

// Scala Lecture 3
//=================


// One of only two places where I conceded to mutable
// data structures: The following function generates 
// new labels

var counter = -1

def fresh(x: String) = {
  counter += 1
  x ++ "_" ++ counter.toString()
}

fresh("x")
fresh("x")

// this can be avoided, but would have made my code more
// complicated


// Tail recursion
//================

def my_contains(elem: Int, lst: List[Int]) : Boolean = lst match {
  case Nil => false
  case x::xs => 
    if (x == elem) true else my_contains(elem, xs)
}

my_contains(4, List(1,2,3))
my_contains(2, List(1,2,3))

my_contains(1000000, (1 to 1000000).toList)
my_contains(1000001, (1 to 1000000).toList)


//factorial 0.1

def fact(n: Long): Long = 
  if (n == 0) 1 else n * fact(n - 1)

fact(10000)


def factT(n: BigInt, acc: BigInt): BigInt =
  if (n == 0) acc else factT(n - 1, n * acc)


factT(10000, 1)

// my_contains and factT are tail recursive 
// you can check this with 

import scala.annotation.tailrec

// and the annotation @tailrec

// for tail-recursive functions the compiler
// generates a loop-like code, which does not
// to allocate stack-space in each recursive
// call; scala can do this only for tail-recursive
// functions

// consider the following "stupid" version of the
// coin exchange problem: given some coins and a,
// total, what is the change can you get

val coins = List(4,5,6,8,10,13,19,20,21,24,38,39, 40)

def first_positive[B](lst: List[Int], f: Int => Option[B]): Option[B] = lst match {
  case Nil => None
  case x::xs => 
    if (x <= 0) first_positive(xs, f)
    else {
      val fx = f(x)
      if (fx.isDefined) fx else first_positive(xs, f)
  }
}


def search(total: Int, coins: List[Int], cs: List[Int]): Option[List[Int]] = {
  if (total < cs.sum) None 
  else if (cs.sum == total) Some(cs) 
  else first_positive(coins, (c: Int) => search(total, coins, c::cs))
}

search(11, coins, Nil)
search(111, coins, Nil)
search(111111, coins, Nil)

val junk_coins = List(4,-2,5,6,8,0,10,13,19,20,-3,21,24,38,39, 40)
search(11, junk_coins, Nil)
search(111, junk_coins, Nil)


import scala.annotation.tailrec

@tailrec
def asearch(total: Int, coins: List[Int], acc_cs: List[List[Int]]): Option[List[Int]] = acc_cs match {
  case Nil => None
  case x::xs => 
    if (total < x.sum) asearch(total, coins, xs)
    else if (x.sum == total) Some(x) 
    else asearch(total, coins, coins.filter(_ > 0).map(_::x) ::: xs)
}

val start_acc = coins.filter(_ > 0).map(List(_))
asearch(11, junk_coins, start_acc)
asearch(111, junk_coins, start_acc)
asearch(111111, junk_coins, start_acc)

// moral: whenever a recursive function is resource-critical
// (i.e. works on large recursion depth), then you need to
// write it in tail-recursive fashion


// Polymorphism
//==============

def length_int_list(lst: List[Int]): Int = lst match {
  case Nil => 0
  case x::xs => 1 + length_int_list(xs)
}

length_int_list(List(1, 2, 3, 4))


def length[A](lst: List[A]): Int = lst match {
  case Nil => 0
  case x::xs => 1 + length(xs)
}


def map_int_list(lst: List[Int], f: Int => Int): List[Int] = lst match {
  case Nil => Nil
  case x::xs => f(x)::map_int_list(xs, f) 
}

map_int_list(List(1, 2, 3, 4), square)


// Remember?
def first[A, B](xs: List[A], f: A => Option[B]): Option[B] = ...


// polymorphic classes
//(trees with some content)

abstract class Tree[+A]
case class Node[A](elem: A, left: Tree[A], right: Tree[A]) extends Tree[A]
case object Leaf extends Tree[Nothing]

def insert[A](tr: Tree[A], n: A): Tree[A] = tr match {
  case Leaf => Node(n, Leaf, Leaf)
  case Node(m, left, right) => 
    if (n == m) Node(m, left, right) 
    else if (n < m) Node(m, insert(left, n), right)
    else Node(m, left, insert(right, n))
}


// the A-type needs to be ordered

abstract class Tree[+A <% Ordered[A]]
case class Node[A <% Ordered[A]](elem: A, left: Tree[A], right: Tree[A]) extends Tree[A]
case object Leaf extends Tree[Nothing]


def insert[A <% Ordered[A]](tr: Tree[A], n: A): Tree[A] = tr match {
  case Leaf => Node(n, Leaf, Leaf)
  case Node(m, left, right) => 
    if (n == m) Node(m, left, right) 
    else if (n < m) Node(m, insert(left, n), right)
    else Node(m, left, insert(right, n))
}


val t1 = Node(4, Node(2, Leaf, Leaf), Node(7, Leaf, Leaf))
insert(t1, 3)

val t2 = Node('b', Node('a', Leaf, Leaf), Node('f', Leaf, Leaf))
insert(t2, 'e')



// Regular expressions - the power of DSLs
//=========================================


abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp 
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp 
case class STAR(r: Rexp) extends Rexp 


// (ab)*
val r0 = ??


// some convenience for typing in regular expressions
import scala.language.implicitConversions    
import scala.language.reflectiveCalls 

def charlist2rexp(s: List[Char]): Rexp = s match {
  case Nil => ONE
  case c::Nil => CHAR(c)
  case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)


val r1 = STAR("ab")
val r2 = STAR("")
val r3 = STAR(ALT("ab", "ba"))


implicit def RexpOps (r: Rexp) = new {
  def | (s: Rexp) = ALT(r, s)
  def % = STAR(r)
  def ~ (s: Rexp) = SEQ(r, s)
}

implicit def stringOps (s: String) = new {
  def | (r: Rexp) = ALT(s, r)
  def | (r: String) = ALT(s, r)
  def % = STAR(s)
  def ~ (r: Rexp) = SEQ(s, r)
  def ~ (r: String) = SEQ(s, r)
}

val digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
val sign = "+" | "-" | ""
val number = sign ~ digit ~ digit.% 



// Lazyness with style
//=====================

// The concept of lazy evaluation doesn’t really exist in 
// non-functional languages, but it is pretty easy to grasp. 
// Consider first 

def square(x: Int) = x * x

square(42 + 8)

// this is called strict evaluation


def expensiveOperation(n: BigInt): Boolean = expensiveOperation(n + 1) 
val a = "foo"
val b = "foo"

val test = if ((a == b) || expensiveOperation(0)) true else false

// this is called lazy evaluation
// you delay compuation until it is really 
// needed; once calculated though, does not 
// need to be re-calculated

// a useful example is
def time_needed[T](i: Int, code: => T) = {
  val start = System.nanoTime()
  for (j <- 1 to i) code
  val end = System.nanoTime()
  ((end - start) / i / 1.0e9) + " secs"
}


// streams (I do not care how many)
// primes: 2, 3, 5, 7, 9, 11, 13 ....

def generatePrimes (s: Stream[Int]): Stream[Int] =
  s.head #:: generatePrimes(s.tail filter (_ % s.head != 0))

val primes: Stream[Int] = generatePrimes(Stream.from(2))

primes.filter(_ > 100).take(2000).toList

time_needed(1, primes.filter(_ > 100).take(2000).toList)
time_needed(1, primes.filter(_ > 100).take(2000).toList)



// streams are useful for implementing search problems ;o)




// The End
//=========

// A function should do one thing, and only one thing.

// Make your variables immutable, unless there's a good 
// reason not to.

// You can be productive on Day 1, but the language is deep.

// I like best about Scala that it lets me write
// concise, readable code