// Part 3 about finding a single tour using the Warnsdorf Rule
//=============================================================
object M4c { // for preparing the jar
type Pos = (Int, Int)
type Path = List[Pos]
// for measuring time in the JAR
def time_needed[T](code: => T) : T = {
val start = System.nanoTime()
val result = code
val end = System.nanoTime()
println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
result
}
def print_board(dim: Int, path: Path): Unit = {
println()
for (i <- 0 until dim) {
for (j <- 0 until dim) {
print(f"${path.reverse.indexOf((i, j))}%4.0f ")
}
println()
}
}
def add_pair(x: Pos, y: Pos): Pos =
(x._1 + y._1, x._2 + y._2)
def is_legal(dim: Int, path: Path, x: Pos): Boolean =
0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
def moves(x: Pos): List[Pos] =
List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
(-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x, _))
def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
moves(x).filter(is_legal(dim, path, _))
def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] =
legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length)
import scala.annotation.tailrec
@tailrec
def tour_on_mega_board_aux(dim: Int, paths: List[Path]): Option[Path] = paths match {
case Nil => None
case (path::rest) =>
if (path.length == dim * dim) Some(path)
else tour_on_mega_board_aux(dim, ordered_moves(dim, path, path.head).map(_::path) ::: rest)
}
def ttour_on_mega_board(dim: Int, path: Path): Option[Path] =
tour_on_mega_board_aux(dim, List(path))
def tour_on_mega_board(dim: Int, path: Path) =
time_needed(ttour_on_mega_board(dim: Int, path: Path))
// testcases
//print_board(70, tour_on_mega_board(70, List((0, 0))).get)
}
//val dim = 30 //75
//M4c.print_board(dim, M4c.tour_on_mega_board(dim, List((0, 0))).get)