// Part 1 about finding and counting Knight's tours
//==================================================
object M4a { // for preparing the jar
type Pos = (Int, Int) // a position on a chessboard
type Path = List[Pos] // a path...a list of positions
// for measuring time in the JAR
def time_needed[T](code: => T) : T = {
val start = System.nanoTime()
val result = code
val end = System.nanoTime()
println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
result
}
// for printing a board
def print_board(dim: Int, path: Path): Unit = {
println()
for (i <- 0 until dim) {
for (j <- 0 until dim) {
print(f"${path.reverse.indexOf((j, dim - i - 1))}%3.0f ")
}
println()
}
}
def is_legal(dim: Int, path: Path, x: Pos): Boolean =
0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
// testcases
//assert(is_legal(8, Nil, (3, 4)) == true)
//assert(is_legal(8, List((4, 1), (1, 0)), (4, 1)) == false)
//assert(is_legal(2, Nil, (0, 0)) == true)
def add_pair(x: Pos, y: Pos): Pos =
(x._1 + y._1, x._2 + y._2)
def moves(x: Pos): List[Pos] =
List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
(-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x, _))
def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
moves(x).filter(is_legal(dim, path, _))
// testcases
//assert(legal_moves(8, Nil, (2,2)) ==
// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==
// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
//assert(legal_moves(8, Nil, (0,1)) == List((1,3), (2,2), (2,0)))
//assert(legal_moves(1, Nil, (0,0)) == List())
//assert(legal_moves(2, Nil, (0,0)) == List())
//assert(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1)))
def tcount_tours(dim: Int, path: Path): Int = {
if (path.length == dim * dim) 1
else
(for (x <- legal_moves(dim, path, path.head)) yield tcount_tours(dim, x::path)).sum
}
def count_tours(dim: Int, path: Path) =
time_needed(tcount_tours(dim: Int, path: Path))
def tenum_tours(dim: Int, path: Path): List[Path] = {
if (path.length == dim * dim) List(path)
else
(for (x <- legal_moves(dim, path, path.head)) yield tenum_tours(dim, x::path)).flatten
}
def enum_tours(dim: Int, path: Path) =
time_needed(tenum_tours(dim: Int, path: Path))
// test cases
/*
def count_all_tours(dim: Int) = {
for (i <- (0 until dim).toList;
j <- (0 until dim).toList) yield count_tours(dim, List((i, j)))
}
def enum_all_tours(dim: Int): List[Path] = {
(for (i <- (0 until dim).toList;
j <- (0 until dim).toList) yield enum_tours(dim, List((i, j)))).flatten
}
println("Number of tours starting from (0, 0)")
for (dim <- 1 to 5) {
println(s"${dim} x ${dim} " + time_needed(0, count_tours(dim, List((0, 0)))))
}
println("Number of tours starting from all fields")
for (dim <- 1 to 5) {
println(s"${dim} x ${dim} " + time_needed(0, count_all_tours(dim)))
}
for (dim <- 1 to 5) {
val ts = enum_tours(dim, List((0, 0)))
println(s"${dim} x ${dim} ")
if (ts != Nil) {
print_board(dim, ts.head)
println(ts.head)
}
}
*/
def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
case Nil => None
case x::xs => {
val result = f(x)
if (result.isDefined) result else first(xs, f)
}
}
// test cases
//def foo(x: (Int, Int)) = if (x._1 > 3) Some(List(x)) else None
//
//first(List((1, 0),(2, 0),(3, 0),(4, 0)), foo)
//first(List((1, 0),(2, 0),(3, 0)), foo)
def tfirst_tour(dim: Int, path: Path): Option[Path] = {
if (path.length == dim * dim) Some(path)
else
first(legal_moves(dim, path, path.head), (x:Pos) => tfirst_tour(dim, x::path))
}
def first_tour(dim: Int, path: Path) =
time_needed(tfirst_tour(dim: Int, path: Path))
/*
for (dim <- 1 to 8) {
val t = first_tour(dim, List((0, 0)))
println(s"${dim} x ${dim} " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
}
*/
// 15 secs for 8 x 8
//val ts1 = time_needed(first_tour(8, List((0, 0))).get)
//??val ts1 = time_needed(first_tour(8, List((7, 7))).get)
// no result for 4 x 4
//val ts2 = time_needed(0, first_tour(4, List((0, 0))))
// 0.3 secs for 6 x 6
//val ts3 = time_needed(0, first_tour(6, List((0, 0))))
// 15 secs for 8 x 8
//time_needed(0, print_board(8, first_tour(8, List((0, 0))).get))
}