// Core Part 1 about the 3n+1 conjecture+ −
//============================================+ −
+ −
object C1 {+ −
+ −
// ADD YOUR CODE BELOW+ −
//======================+ −
+ −
// test1 7 Nov+ −
// test2+ −
// test3+ −
// test4+ −
+ −
+ −
//(1) + −
def collatz(n: Long) : Long = + −
if (n == 1) 0 else+ −
if (n % 2 == 0) 1 + collatz(n / 2) else + −
1 + collatz(3 * n + 1)+ −
+ −
+ −
//(2) + −
//def collatz_max(bnd: Long) : (Long, Long) = {+ −
// val all = for (i <- (1L to bnd)) yield (collatz(i), i)+ −
// all.maxBy(_._1)+ −
//}+ −
+ −
def collatz_max(bnd: Long): (Long, Long) = {+ −
val all = for (i <- (1L to bnd)) yield (collatz(i), i)+ −
all.maxBy(_._1)+ −
}+ −
+ −
+ −
+ −
//(3)+ −
+ −
def is_pow_of_two(n: Long) : Boolean = (n & (n - 1)) == 0+ −
+ −
def is_hard(n: Long) : Boolean = is_pow_of_two(3 * n + 1)+ −
+ −
def last_odd(n: Long) : Long = if (is_hard(n)) n else+ −
if (n % 2 == 0) last_odd(n / 2) else + −
last_odd(3 * n + 1)+ −
+ −
}+ −
+ −
+ −
+ −
// This template code is subject to copyright + −
// by King's College London, 2022. Do not + −
// make the template code public in any shape + −
// or form, and do not exchange it with other + −
// students under any circumstance.+ −