// Part 3 about finding a single tour using the Warnsdorf Rule
//=============================================================
type Pos = (Int, Int)
type Path = List[Pos]
def print_board(dim: Int, path: Path): Unit = {
println
for (i <- 0 until dim) {
for (j <- 0 until dim) {
print(f"${path.reverse.indexOf((i, j))}%3.0f ")
}
println
}
}
def add_pair(x: Pos)(y: Pos): Pos =
(x._1 + y._1, x._2 + y._2)
def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
def moves(x: Pos): List[Pos] =
List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
(-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x))
def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
moves(x).filter(is_legal(dim, path))
def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] =
legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length)
def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
case Nil => None
case x::xs => {
val result = f(x)
if (result.isDefined) result else first(xs, f)
}
}
def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = {
if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path)
else
first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path))
}
for (dim <- 1 to 6) {
val t = first_closed_tour_heuristics(dim, List((dim / 2, dim / 2)))
println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
}
def first_tour_heuristics(dim: Int, path: Path): Option[Path] = {
if (path.length == dim * dim) Some(path)
else
first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path))
}
for (dim <- 1 to 50) {
val t = first_tour_heuristics(dim, List((dim / 2, dim / 2)))
println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
}