// Shunting Yard Algorithm
// by Edsger Dijkstra
// ========================
object C3a {
// type of tokens
type Toks = List[String]
// the operations in the basic version of the algorithm
val ops = List("+", "-", "*", "/")
// the precedences of the operators
val precs = Map("+" -> 1,
"-" -> 1,
"*" -> 2,
"/" -> 2)
// helper function for splitting strings into tokens
def split(s: String) : Toks = s.split(" ").toList
// ADD YOUR CODE BELOW
//======================
// (1)
def is_op(op: String) : Boolean = ???
def prec(op1: String, op2: String) : Boolean = ???
def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = ???
// test cases
//syard(split("3 + 4 * ( 2 - 1 )")) // 3 4 2 1 - * +
//syard(split("10 + 12 * 33")) // 10 12 33 * +
//syard(split("( 5 + 7 ) * 2")) // 5 7 + 2 *
//syard(split("5 + 7 / 2")) // 5 7 2 / +
//syard(split("5 * 7 / 2")) // 5 7 * 2 /
//syard(split("9 + 24 / ( 7 - 3 )")) // 9 24 7 3 - / +
//syard(split("3 + 4 + 5")) // 3 4 + 5 +
//syard(split("( ( 3 + 4 ) + 5 )")) // 3 4 + 5 +
//syard(split("( 3 + ( 4 + 5 ) )")) // 3 4 5 + +
//syard(split("( ( ( 3 ) ) + ( ( 4 + ( 5 ) ) ) )")) // 3 4 5 + +
// (2)
def compute(toks: Toks, st: List[Int] = Nil) : Int = ???
// test cases
// compute(syard(split("3 + 4 * ( 2 - 1 )"))) // 7
// compute(syard(split("10 + 12 * 33"))) // 406
// compute(syard(split("( 5 + 7 ) * 2"))) // 24
// compute(syard(split("5 + 7 / 2"))) // 8
// compute(syard(split("5 * 7 / 2"))) // 17
// compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15
}