// Scala Lecture 4+ −
//=================+ −
+ −
+ −
// expressions (essentially trees)+ −
+ −
abstract class Exp+ −
case class N(n: Int) extends Exp // for numbers+ −
case class Plus(e1: Exp, e2: Exp) extends Exp+ −
case class Times(e1: Exp, e2: Exp) extends Exp+ −
+ −
def string(e: Exp) : String = e match {+ −
case N(n) => s"$n"+ −
case Plus(e1, e2) => s"(${string(e1)} + ${string(e2)})" + −
case Times(e1, e2) => s"(${string(e1)} * ${string(e2)})"+ −
}+ −
+ −
val e = Plus(N(9), Times(N(3), N(4)))+ −
println(string(e))+ −
+ −
def eval(e: Exp) : Int = e match {+ −
case N(n) => n+ −
case Plus(e1, e2) => eval(e1) + eval(e2) + −
case Times(e1, e2) => eval(e1) * eval(e2) + −
}+ −
+ −
println(eval(e))+ −
+ −
// simplification rules:+ −
// e + 0, 0 + e => e + −
// e * 0, 0 * e => 0+ −
// e * 1, 1 * e => e+ −
//+ −
// (....0 ....)+ −
+ −
def simp(e: Exp) : Exp = e match {+ −
case N(n) => N(n)+ −
case Plus(e1, e2) => (simp(e1), simp(e2)) match {+ −
case (N(0), e2s) => e2s+ −
case (e1s, N(0)) => e1s+ −
case (e1s, e2s) => Plus(e1s, e2s)+ −
} + −
case Times(e1, e2) => (simp(e1), simp(e2)) match {+ −
case (N(0), _) => N(0)+ −
case (_, N(0)) => N(0)+ −
case (N(1), e2s) => e2s+ −
case (e1s, N(1)) => e1s+ −
case (e1s, e2s) => Times(e1s, e2s)+ −
} + −
}+ −
+ −
+ −
val e2 = Times(Plus(N(0), N(1)), Plus(N(0), N(9)))+ −
println(string(e2))+ −
println(string(simp(e2)))+ −
+ −
+ −
// Tokens and Reverse Polish Notation+ −
abstract class Token+ −
case class T(n: Int) extends Token+ −
case object PL extends Token+ −
case object TI extends Token+ −
+ −
// transfroming an Exp into a list of tokens+ −
def rp(e: Exp) : List[Token] = e match {+ −
case N(n) => List(T(n))+ −
case Plus(e1, e2) => rp(e1) ::: rp(e2) ::: List(PL) + −
case Times(e1, e2) => rp(e1) ::: rp(e2) ::: List(TI) + −
}+ −
println(string(e2))+ −
println(rp(e2))+ −
+ −
def comp(ls: List[Token], st: List[Int] = Nil) : Int = (ls, st) match {+ −
case (Nil, st) => st.head + −
case (T(n)::rest, st) => comp(rest, n::st)+ −
case (PL::rest, n1::n2::st) => comp(rest, n1 + n2::st)+ −
case (TI::rest, n1::n2::st) => comp(rest, n1 * n2::st)+ −
}+ −
+ −
comp(rp(e))+ −
+ −
def proc(s: String) : Token = s match {+ −
case "+" => PL+ −
case "*" => TI+ −
case _ => T(s.toInt) + −
}+ −
+ −
comp("1 2 + 4 * 5 + 3 +".split(" ").toList.map(proc), Nil)+ −
+ −
+ −
// Polymorphic Types+ −
//===================+ −
+ −
// You do not want to write functions like contains, first, + −
// length and so on for every type of lists.+ −
+ −
def length_int_list(lst: List[Int]): Int = lst match {+ −
case Nil => 0+ −
case x::xs => 1 + length_int_list(xs)+ −
}+ −
+ −
length_int_list(List(1, 2, 3, 4))+ −
+ −
def length_string_list(lst: List[String]): Int = lst match {+ −
case Nil => 0+ −
case _::xs => 1 + length_string_list(xs)+ −
}+ −
+ −
length_string_list(List("1", "2", "3", "4"))+ −
+ −
+ −
// you can make the function parametric in type(s)+ −
+ −
def length[A](lst: List[A]): Int = lst match {+ −
case Nil => 0+ −
case x::xs => 1 + length(xs)+ −
}+ −
length(List("1", "2", "3", "4"))+ −
length(List(1, 2, 3, 4))+ −
+ −
length[Int](List(1, 2, 3, 4))+ −
+ −
+ −
def map[A, B](lst: List[A], f: A => B): List[B] = lst match {+ −
case Nil => Nil+ −
case x::xs => f(x)::map(xs, f) + −
}+ −
+ −
map(List(1, 2, 3, 4), (x: Int) => x.toString)+ −
+ −
+ −
// from knight1.scala+ −
def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] = ???+ −
+ −
// should be+ −
def first[A, B](xs: List[A], f: A => Option[B]) : Option[B] = ???+ −
+ −
// Type inference is local in Scala+ −
+ −
def id[T](x: T) : T = x+ −
+ −
val x = id(322) // Int+ −
val y = id("hey") // String+ −
val z = id(Set(1,2,3,4)) // Set[Int]+ −
+ −
+ −
// The type variable concept in Scala can get really complicated.+ −
//+ −
// - variance (OO)+ −
// - bounds (subtyping)+ −
// - quantification+ −
+ −
// Java has issues with this too: Java allows+ −
// to write the following incorrect code, and+ −
// only recovers by raising an exception+ −
// at runtime.+ −
+ −
// Object[] arr = new Integer[10];+ −
// arr[0] = "Hello World";+ −
+ −
+ −
// Scala gives you a compile-time error, which+ −
// is much better.+ −
+ −
var arr = Array[Int]()+ −
arr(0) = "Hello World"+ −
+ −
+ −
+ −
+ −
// Function definitions again+ −
//============================+ −
+ −
// variable arguments+ −
+ −
def printAll(strings: String*) = {+ −
strings.foreach(println)+ −
}+ −
+ −
printAll()+ −
printAll("foo")+ −
printAll("foo", "bar")+ −
printAll("foo", "bar", "baz")+ −
+ −
// pass a list to the varargs field+ −
val fruits = List("apple", "banana", "cherry")+ −
+ −
printAll(fruits: _*)+ −
+ −
+ −
// you can also implement your own string interpolations+ −
import scala.language.implicitConversions+ −
import scala.language.reflectiveCalls+ −
+ −
implicit def sring_inters(sc: StringContext) = new {+ −
def i(args: Any*): String = s"${sc.s(args:_*)}\n"+ −
}+ −
+ −
i"add ${3+2} ${3 * 3}" + −
+ −
+ −
// default arguments+ −
+ −
def length[A](xs: List[A]) : Int = xs match {+ −
case Nil => 0+ −
case _ :: tail => 1 + length(tail)+ −
}+ −
+ −
def lengthT[A](xs: List[A], acc : Int = 0) : Int = xs match {+ −
case Nil => acc+ −
case _ :: tail => lengthT(tail, 1 + acc)+ −
}+ −
+ −
lengthT(List.fill(100000)(1))+ −
+ −
+ −
def fact(n: BigInt, acc: BigInt = 1): BigInt =+ −
if (n == 0) acc else fact(n - 1, n * acc)+ −
+ −
fact(10)+ −
+ −
+ −
+ −
// currying (Haskell Curry)+ −
+ −
def add(x: Int, y: Int) = x + y+ −
+ −
List(1,2,3,4,5).map(x => add(3, x))+ −
+ −
def add2(x: Int)(y: Int) = x + y+ −
+ −
List(1,2,3,4,5).map(add2(3))+ −
+ −
val a3 : Int => Int = add2(3)+ −
+ −
// currying helps sometimes with type inference+ −
+ −
def find[A](xs: List[A])(pred: A => Boolean): Option[A] = {+ −
xs match {+ −
case Nil => None+ −
case hd :: tl =>+ −
if (pred(hd)) Some(hd) else find(tl)(pred)+ −
}+ −
}+ −
+ −
find(List(1, 2, 3))(x => x % 2 == 0)+ −
+ −
// Source.fromURL(url)(encoding)+ −
// Source.fromFile(name)(encoding)+ −
+ −
+ −
// Tail recursion+ −
//================+ −
+ −
@tailrec+ −
def fact(n: BigInt): BigInt = + −
if (n == 0) 1 else n * fact(n - 1)+ −
+ −
+ −
fact(10) + −
fact(1000) + −
fact(100000) + −
+ −
def factB(n: BigInt): BigInt = + −
if (n == 0) 1 else n * factB(n - 1)+ −
+ −
def factT(n: BigInt, acc: BigInt): BigInt =+ −
if (n == 0) acc else factT(n - 1, n * acc)+ −
+ −
+ −
factB(1000)+ −
+ −
+ −
factT(10, 1)+ −
println(factT(500000, 1))+ −
+ −
+ −
// there is a flag for ensuring a function is tail recursive+ −
import scala.annotation.tailrec+ −
+ −
@tailrec+ −
def factT(n: BigInt, acc: BigInt): BigInt =+ −
if (n == 0) acc else factT(n - 1, n * acc)+ −
+ −
factT(100000, 1)+ −
+ −
// for tail-recursive functions the Scala compiler+ −
// generates loop-like code, which does not need+ −
// to allocate stack-space in each recursive+ −
// call; Scala can do this only for tail-recursive+ −
// functions+ −
+ −
// Moral: Whenever a recursive function is resource-critical+ −
// (i.e. works with a large recursion depth), then you need to+ −
// write it in tail-recursive fashion.+ −
// + −
// Unfortuantely, Scala because of current limitations in + −
// the JVM is not as clever as other functional languages. It can + −
// only optimise "self-tail calls". This excludes the cases of + −
// multiple functions making tail calls to each other. Well,+ −
// nothing is perfect. + −
+ −
+ −
+ −
+ −
+ −
// Sudoku + −
//========+ −
+ −
// THE POINT OF THIS CODE IS NOT TO BE SUPER+ −
// EFFICIENT AND FAST, just explaining exhaustive+ −
// depth-first search+ −
+ −
+ −
val game0 = """.14.6.3..+ −
|62...4..9+ −
|.8..5.6..+ −
|.6.2....3+ −
|.7..1..5.+ −
|5....9.6.+ −
|..6.2..3.+ −
|1..5...92+ −
|..7.9.41.""".stripMargin.replaceAll("\\n", "")+ −
+ −
+ −
+ −
type Pos = (Int, Int)+ −
val EmptyValue = '.'+ −
val MaxValue = 9+ −
+ −
def pretty(game: String): String = + −
"\n" + (game.grouped(MaxValue).mkString("\n"))+ −
+ −
pretty(game0)+ −
+ −
+ −
val allValues = "123456789".toList+ −
val indexes = (0 to 8).toList+ −
+ −
def empty(game: String) = game.indexOf(EmptyValue)+ −
def isDone(game: String) = empty(game) == -1 + −
def emptyPosition(game: String) = {+ −
val e = empty(game)+ −
(e % MaxValue, e / MaxValue)+ −
}+ −
+ −
def get_row(game: String, y: Int) = + −
indexes.map(col => game(y * MaxValue + col))+ −
def get_col(game: String, x: Int) = + −
indexes.map(row => game(x + row * MaxValue))+ −
+ −
//get_row(game0, 0)+ −
//get_row(game0, 1)+ −
//get_col(game0, 0)+ −
+ −
def get_box(game: String, pos: Pos): List[Char] = {+ −
def base(p: Int): Int = (p / 3) * 3+ −
val x0 = base(pos._1)+ −
val y0 = base(pos._2)+ −
val ys = (y0 until y0 + 3).toList+ −
(x0 until x0 + 3).toList+ −
.flatMap(x => ys.map(y => game(x + y * MaxValue)))+ −
}+ −
+ −
+ −
//get_box(game0, (3, 1))+ −
+ −
+ −
// this is not mutable!!+ −
def update(game: String, pos: Int, value: Char): String = + −
game.updated(pos, value)+ −
+ −
def toAvoid(game: String, pos: Pos): List[Char] = + −
(get_col(game, pos._1) ++ + −
get_row(game, pos._2) ++ + −
get_box(game, pos))+ −
+ −
def candidates(game: String, pos: Pos): List[Char] = + −
allValues.diff(toAvoid(game, pos))+ −
+ −
//candidates(game0, (0,0))+ −
+ −
+ −
def search(game: String): List[String] = {+ −
if (isDone(game)) List(game)+ −
else {+ −
val cs = candidates(game, emptyPosition(game))+ −
cs.map(c => search(update(game, empty(game), c))).flatten+ −
}+ −
}+ −
+ −
pretty(game0)+ −
search(game0).map(pretty)+ −
+ −
val game1 = """23.915...+ −
|...2..54.+ −
|6.7......+ −
|..1.....9+ −
|89.5.3.17+ −
|5.....6..+ −
|......9.5+ −
|.16..7...+ −
|...329..1""".stripMargin.replaceAll("\\n", "")+ −
+ −
search(game1).map(pretty)+ −
+ −
// a game that is in the hard category+ −
val game2 = """8........+ −
|..36.....+ −
|.7..9.2..+ −
|.5...7...+ −
|....457..+ −
|...1...3.+ −
|..1....68+ −
|..85...1.+ −
|.9....4..""".stripMargin.replaceAll("\\n", "")+ −
+ −
search(game2).map(pretty)+ −
+ −
// game with multiple solutions+ −
val game3 = """.8...9743+ −
|.5...8.1.+ −
|.1.......+ −
|8....5...+ −
|...8.4...+ −
|...3....6+ −
|.......7.+ −
|.3.5...8.+ −
|9724...5.""".stripMargin.replaceAll("\\n", "")+ −
+ −
search(game3).map(pretty).foreach(println)+ −
+ −
// for measuring time+ −
def time_needed[T](i: Int, code: => T) = {+ −
val start = System.nanoTime()+ −
for (j <- 1 to i) code+ −
val end = System.nanoTime()+ −
s"${(end - start) / 1.0e9} secs"+ −
}+ −
+ −
time_needed(1, search(game2))+ −
+ −
+ −
+ −
// tail recursive version that searches + −
// for all Sudoku solutions+ −
import scala.annotation.tailrec+ −
+ −
@tailrec+ −
def searchT(games: List[String], sols: List[String]): List[String] = + −
games match {+ −
case Nil => sols+ −
case game::rest => {+ −
if (isDone(game)) searchT(rest, game::sols)+ −
else {+ −
val cs = candidates(game, emptyPosition(game))+ −
searchT(cs.map(c => update(game, empty(game), c)) ::: rest, sols)+ −
}+ −
}+ −
}+ −
+ −
searchT(List(game3), List()).map(pretty)+ −
+ −
+ −
// tail recursive version that searches + −
// for a single solution+ −
+ −
def search1T(games: List[String]): Option[String] = games match {+ −
case Nil => None+ −
case game::rest => {+ −
if (isDone(game)) Some(game)+ −
else {+ −
val cs = candidates(game, emptyPosition(game))+ −
search1T(cs.map(c => update(game, empty(game), c)) ::: rest)+ −
}+ −
}+ −
}+ −
+ −
search1T(List(game3)).map(pretty)+ −
time_needed(1, search1T(List(game3)))+ −
time_needed(1, search1T(List(game2)))+ −
+ −
// game with multiple solutions+ −
val game3 = """.8...9743+ −
|.5...8.1.+ −
|.1.......+ −
|8....5...+ −
|...8.4...+ −
|...3....6+ −
|.......7.+ −
|.3.5...8.+ −
|9724...5.""".stripMargin.replaceAll("\\n", "")+ −
+ −
searchT(List(game3), Nil).map(pretty)+ −
search1T(List(game3)).map(pretty)+ −
+ −
+ −
+ −
+ −
+ −
+ −
// Cool Stuff in Scala+ −
//=====================+ −
+ −
+ −
// Implicits or How to Pimp your Library+ −
//======================================+ −
//+ −
// For example adding your own methods to Strings:+ −
// Imagine you want to increment strings, like+ −
//+ −
// "HAL".increment+ −
//+ −
// you can avoid ugly fudges, like a MyString, by+ −
// using implicit conversions.+ −
+ −
+ −
implicit class MyString(s: String) {+ −
def increment = s.map(c => (c + 1).toChar) + −
}+ −
+ −
"HAL".increment+ −
+ −
+ −
// Abstract idea:+ −
// In that version implicit conversions were used to solve the + −
// late extension problem; namely, given a class C and a class T, + −
// how to have C extend T without touching or recompiling C. + −
// Conversions add a wrapper when a member of T is requested + −
// from an instance of C.+ −
+ −
+ −
+ −
import scala.concurrent.duration.{TimeUnit,SECONDS,MINUTES}+ −
+ −
case class Duration(time: Long, unit: TimeUnit) {+ −
def +(o: Duration) = + −
Duration(time + unit.convert(o.time, o.unit), unit)+ −
}+ −
+ −
implicit class Int2Duration(that: Int) {+ −
def seconds = Duration(that, SECONDS)+ −
def minutes = Duration(that, MINUTES)+ −
}+ −
+ −
5.seconds + 2.minutes //Duration(125L, SECONDS )+ −
2.minutes + 60.seconds+ −
+ −
+ −
+ −
+ −
// Regular expressions - the power of DSLs in Scala+ −
//==================================================+ −
+ −
abstract class Rexp+ −
case object ZERO extends Rexp // nothing+ −
case object ONE extends Rexp // the empty string+ −
case class CHAR(c: Char) extends Rexp // a character c+ −
case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative r1 + r2+ −
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence r1 . r2 + −
case class STAR(r: Rexp) extends Rexp // star r*+ −
+ −
+ −
+ −
// writing (ab)* in the format above is + −
// tedious+ −
val r0 = STAR(SEQ(CHAR('a'), CHAR('b')))+ −
+ −
+ −
// some convenience for typing in regular expressions+ −
import scala.language.implicitConversions + −
import scala.language.reflectiveCalls + −
+ −
def charlist2rexp(s: List[Char]): Rexp = s match {+ −
case Nil => ONE+ −
case c::Nil => CHAR(c)+ −
case c::s => SEQ(CHAR(c), charlist2rexp(s))+ −
}+ −
+ −
implicit def string2rexp(s: String): Rexp = + −
charlist2rexp(s.toList)+ −
+ −
val r1 = STAR("hello")+ −
val r2 = STAR("hello") | STAR("world")+ −
+ −
+ −
implicit def RexpOps (r: Rexp) = new {+ −
def | (s: Rexp) = ALT(r, s)+ −
def % = STAR(r)+ −
def ~ (s: Rexp) = SEQ(r, s)+ −
}+ −
+ −
implicit def stringOps (s: String) = new {+ −
def | (r: Rexp) = ALT(s, r)+ −
def | (r: String) = ALT(s, r)+ −
def % = STAR(s)+ −
def ~ (r: Rexp) = SEQ(s, r)+ −
def ~ (r: String) = SEQ(s, r)+ −
}+ −
+ −
//example regular expressions+ −
+ −
+ −
val digit = ("0" | "1" | "2" | "3" | "4" | + −
"5" | "6" | "7" | "8" | "9")+ −
val sign = "+" | "-" | ""+ −
val number = sign ~ digit ~ digit.% + −
+ −
+ −
+ −
+ −
// In mandelbrot.scala I used complex (imaginary) numbers + −
// and implemented the usual arithmetic operations for complex + −
// numbers.+ −
+ −
case class Complex(re: Double, im: Double) { + −
// represents the complex number re + im * i+ −
def +(that: Complex) = Complex(this.re + that.re, this.im + that.im)+ −
def -(that: Complex) = Complex(this.re - that.re, this.im - that.im)+ −
def *(that: Complex) = Complex(this.re * that.re - this.im * that.im,+ −
this.re * that.im + that.re * this.im)+ −
def *(that: Double) = Complex(this.re * that, this.im * that)+ −
def abs = Math.sqrt(this.re * this.re + this.im * this.im)+ −
}+ −
+ −
val test = Complex(1, 2) + Complex (3, 4)+ −
+ −
+ −
// ...to allow the notation n + m * i+ −
import scala.language.implicitConversions + −
+ −
val i = Complex(0, 1)+ −
implicit def double2complex(re: Double) = Complex(re, 0)+ −
+ −
val inum1 = -2.0 + -1.5 * i+ −
val inum2 = 1.0 + 1.5 * i+ −