// Scala Lecture 2
//=================
// Option type
//=============
//in Java if something unusually happens, you return null;
//in Scala you use Option
// - if the value is present, you use Some(value)
// - if no value is present, you use None
List(7,2,3,4,5,6).find(_ < 4)
List(5,6,7,8,9).find(_ < 4)
// Values in types
//
// Boolean:
// Int:
// String:
//
// Option[String]:
//
val lst = List(None, Some(1), Some(2), None, Some(3))
lst.flatten
Some(1).get
Some(1).isDefined
None.isDefined
val ps = List((3, 0), (3, 2), (4, 2), (2, 0), (1, 0), (1, 1))
for ((x, y) <- ps) yield {
if (y == 0) None else Some(x / y)
}
// getOrElse is for setting a default value
val lst = List(None, Some(1), Some(2), None, Some(3))
for (x <- lst) yield x.getOrElse(0)
// error handling with Option (no exceptions)
//
// Try(something).getOrElse(what_to_do_in_an_exception)
//
import scala.util._
import io.Source
Source.fromURL("""http://www.inf.kcl.ac.uk/staff/urbanc/""").mkString
Try(Source.fromURL("""http://www.inf.kcl.ac.uk/staff/urbanc/""").mkString).getOrElse("")
Try(Some(Source.fromURL("""http://www.inf.kcl.ac.uk/staff/urbanc/""").mkString)).getOrElse(None)
// a function that turns strings into numbers
Integer.parseInt("12u34")
def get_me_an_int(s: String): Option[Int] =
Try(Some(Integer.parseInt(s))).getOrElse(None)
val lst = List("12345", "foo", "5432", "bar", "x21")
for (x <- lst) yield get_me_an_int(x)
// summing all the numbers
val sum = lst.flatMap(get_me_an_int(_)).sum
// This may not look any better than working with null in Java, but to
// see the value, you have to put yourself in the shoes of the
// consumer of the get_me_an_int function, and imagine you didn't
// write that function.
//
// In Java, if you didn't write this function, you'd have to depend on
// the Javadoc of the get_me_an_int. If you didn't look at the Javadoc,
// you might not know that get_me_an_int could return a null, and your
// code could potentially throw a NullPointerException.
// even Scala is not immune to problems like this:
List(5,6,7,8,9).indexOf(7)
// Type abbreviations
//====================
// some syntactic convenience
type Pos = (int, Int)
type Board = List[List[Int]]
// Implicits
//===========
//
// for example adding your own methods to Strings:
// imagine you want to increment strings, like
//
// "HAL".increment
//
// you can avoid ugly fudges, like a MyString, by
// using implicit conversions
implicit class MyString(s: String) {
def increment = for (c <- s) yield (c + 1).toChar
}
"HAL".increment
// No return in Scala
//====================
//You should not use "return" in Scala:
//
// A return expression, when evaluated, abandons the
// current computation and returns to the caller of the
// function in which return appears."
def sq1(x: Int): Int = x * x
def sq2(x: Int): Int = return x * x
def sumq(ls: List[Int]): Int = {
(for (x <- ls) yield (return x * x)).sum[Int]
}
sumq(List(1,2,3,4))
// last expression in a function is the return statement
def square(x: Int): Int = {
println(s"The argument is ${x}.")
x * x
}
// Pattern Matching
//==================
// A powerful tool which is supposed to come to Java in a few years
// time (https://www.youtube.com/watch?v=oGll155-vuQ)...Scala already
// has it for many years ;o)
// The general schema:
//
// expression match {
// case pattern1 => expression1
// case pattern2 => expression2
// ...
// case patternN => expressionN
// }
// remember
val lst = List(None, Some(1), Some(2), None, Some(3)).flatten
def my_flatten(xs: List[Option[Int]]): List[Int] = {
...
}
def my_flatten(lst: List[Option[Int]]): List[Int] = lst match {
case Nil => Nil
case None::xs => my_flatten(xs)
case Some(n)::xs => n::my_flatten(xs)
}
// another example
def get_me_a_string(n: Int): String = n match {
case 0 => "zero"
case 1 => "one"
case 2 => "two"
case _ => "many"
}
get_me_a_string(0)
// you can also have cases combined
def season(month: String) = month match {
case "March" | "April" | "May" => "It's spring"
case "June" | "July" | "August" => "It's summer"
case "September" | "October" | "November" => "It's autumn"
case "December" | "January" | "February" => "It's winter"
}
println(season("November"))
// What happens if no case matches?
println(season("foobar"))
// User-defined Datatypes
//========================
abstract class Tree
case class Node(elem: Int, left: Tree, right: Tree) extends Tree
case class Leaf() extends Tree
def insert(tr: Tree, n: Int): Tree = tr match {
case Leaf() => Node(n, Leaf(), Leaf())
case Node(m, left, right) =>
if (n == m) Node(m, left, right)
else if (n < m) Node(m, insert(left, n), right)
else Node(m, left, insert(right, n))
}
val t1 = Node(4, Node(2, Leaf(), Leaf()), Node(7, Leaf(), Leaf()))
insert(t1, 3)
def depth(tr: Tree): Int = tr match {
case Leaf() => 0
case Node(_, left, right) => 1 + List(depth(left), depth(right)).max
}
def balance(tr: Tree): Int = tr match {
case Leaf() => 0
case Node(_, left, right) => depth(left) - depth(right)
}
balance(insert(t1, 3))
// another example
abstract class Person
case class King() extends Person
case class Peer(deg: String, terr: String, succ: Int) extends Person
case class Knight(name: String) extends Person
case class Peasant(name: String) extends Person
case class Clown() extends Person
def title(p: Person): String = p match {
case King() => "His Majesty the King"
case Peer(deg, terr, _) => s"The ${deg} of ${terr}"
case Knight(name) => s"Sir ${name}"
case Peasant(name) => name
}
def superior(p1: Person, p2: Person): Boolean = (p1, p2) match {
case (King(), _) => true
case (Peer(_,_,_), Knight(_)) => true
case (Peer(_,_,_), Peasant(_)) => true
case (Peer(_,_,_), Clown()) => true
case (Knight(_), Peasant(_)) => true
case (Knight(_), Clown()) => true
case (Clown(), Peasant(_)) => true
case _ => false
}
val people = List(Knight("David"),
Peer("Duke", "Norfolk", 84),
Peasant("Christian"),
King(),
Clown())
println(people.sortWith(superior(_, _)).mkString(", "))
// Higher-Order Functions
//========================
// functions can take functions as arguments
val lst = (1 to 10).toList
def even(x: Int): Boolean = x % 2 == 0
def odd(x: Int): Boolean = x % 2 == 1
lst.filter(x => even(x))
lst.filter(even(_))
lst.filter(even)
lst.find(_ > 8)
def square(x: Int): Int = x * x
lst.map(square)
lst.map(square).filter(_ > 4)
lst.map(square).filter(_ > 4).map(square)
// in my collatz.scala
//(1 to bnd).map(i => (collatz(i), i)).maxBy(_._1)
// type of functions, for example f: Int => Int
def my_map_int(lst: List[Int], f: Int => Int): List[Int] = lst match {
case Nil => Nil
case x::xs => f(x)::my_map_int(xs, f)
}
my_map_int(lst, square)
// other function types
//
// f1: (Int, Int) => Int
// f2: List[String] => Option[Int]
// ...
def sumOf(f: Int => Int, lst: List[Int]): Int = lst match {
case Nil => 0
case x::xs => f(x) + sumOf(f, xs)
}
def sum_squares(lst: List[Int]) = sumOf(square, lst)
def sum_cubes(lst: List[Int]) = sumOf(x => x * x * x, lst)
sum_squares(lst)
sum_cubes(lst)
// lets try it factorial
def fact(n: Int): Int = ...
def sum_fact(lst: List[Int]) = sumOf(fact, lst)
sum_fact(lst)
// Avoid being mutable
//=====================
// a student showed me...
import scala.collection.mutable.ListBuffer
def collatz_max(bnd: Long): (Long, Long) = {
val colNos = ListBuffer[(Long, Long)]()
for (i <- (1L to bnd).toList) colNos += ((collatz(i), i))
colNos.max
}
def collatz_max(bnd: Long): (Long, Long) = {
(1L to bnd).map((i) => (collatz(i), i)).maxBy(_._1)
}
//views -> lazy collection
def collatz_max(bnd: Long): (Long, Long) = {
(1L to bnd).view.map((i) => (collatz(i), i)).maxBy(_._1)
}
// raises a GC exception
(1 to 1000000000).filter(_ % 2 == 0).take(10).toList
// ==> java.lang.OutOfMemoryError: GC overhead limit exceeded
(1 to 1000000000).view.filter(_ % 2 == 0).take(10).toList
// Sudoku
//========
// THE POINT OF THIS CODE IS NOT TO BE SUPER
// EFFICIENT AND FAST, just explaining exhaustive
// depth-first search
val game0 = """.14.6.3..
|62...4..9
|.8..5.6..
|.6.2....3
|.7..1..5.
|5....9.6.
|..6.2..3.
|1..5...92
|..7.9.41.""".stripMargin.replaceAll("\\n", "")
type Pos = (Int, Int)
val EmptyValue = '.'
val MaxValue = 9
val allValues = "123456789".toList
val indexes = (0 to 8).toList
def empty(game: String) = game.indexOf(EmptyValue)
def isDone(game: String) = empty(game) == -1
def emptyPosition(game: String) = (empty(game) % MaxValue, empty(game) / MaxValue)
def get_row(game: String, y: Int) = indexes.map(col => game(y * MaxValue + col))
def get_col(game: String, x: Int) = indexes.map(row => game(x + row * MaxValue))
def get_box(game: String, pos: Pos): List[Char] = {
def base(p: Int): Int = (p / 3) * 3
val x0 = base(pos._1)
val y0 = base(pos._2)
val ys = (y0 until y0 + 3).toList
(x0 until x0 + 3).toList.flatMap(x => ys.map(y => game(x + y * MaxValue)))
}
//get_row(game0, 0)
//get_row(game0, 1)
//get_box(game0, (3,1))
def update(game: String, pos: Int, value: Char): String = game.updated(pos, value)
def toAvoid(game: String, pos: Pos): List[Char] =
(get_col(game, pos._1) ++ get_row(game, pos._2) ++ get_box(game, pos))
def candidates(game: String, pos: Pos): List[Char] = allValues diff toAvoid(game,pos)
//candidates(game0, (0,0))
def pretty(game: String): String = "\n" + (game sliding (MaxValue, MaxValue) mkString "\n")
def search(game: String): List[String] = {
if (isDone(game)) List(game)
else
candidates(game, emptyPosition(game)).map(c => search(update(game, empty(game), c))).toList.flatten
}
val game1 = """23.915...
|...2..54.
|6.7......
|..1.....9
|89.5.3.17
|5.....6..
|......9.5
|.16..7...
|...329..1""".stripMargin.replaceAll("\\n", "")
// game that is in the hard category
val game2 = """8........
|..36.....
|.7..9.2..
|.5...7...
|....457..
|...1...3.
|..1....68
|..85...1.
|.9....4..""".stripMargin.replaceAll("\\n", "")
// game with multiple solutions
val game3 = """.8...9743
|.5...8.1.
|.1.......
|8....5...
|...8.4...
|...3....6
|.......7.
|.3.5...8.
|9724...5.""".stripMargin.replaceAll("\\n", "")
search(game0).map(pretty)
search(game1).map(pretty)
// for measuring time
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
((end - start) / i / 1.0e9) + " secs"
}
search(game2).map(pretty)
search(game3).distinct.length
time_needed(3, search(game2))
time_needed(3, search(game3))